Skip to main content
Log in

A class of topological spreads with unisymplecticly complemented regulization

  • Research article
  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We give an application of the extended Thas-Walker construction. The major tool is the concept of Thas-Walker line sets which can be seen as link between flockoids of a Lie quadric on the one hand and spreads with symplecticly complemented regulization on the other hand. We construct a class c of Thas-Walker line sets with respect to a Lie quadric of the real projective 4-space. In c we find 4-spatial, solid, and planar Thas-Walker line sets such that the corresponding classes D and C of flockoids resp. spreads contain also 3 types each. The class C consists of topological spreads \({\cal A}_{\varepsilon_{1},\varepsilon_{2},\varepsilon_{3}}\) with unisymplecticly complemented regulization. If ε1ε2ε3 ≠ 0, then the spread \({\cal A}_{\varepsilon_{1},\varepsilon_{2},\varepsilon_{3}}\) is algebraic and rigid, i.e., the group Aut \({\cal A}_{\varepsilon_{1},\varepsilon_{2},\varepsilon_{3}}\) of all collineations leaving \({\cal A}_{\varepsilon_{1},\varepsilon_{2},\varepsilon_{3}}\) invariant contains only the identity. If ε1ε2 ≠ 0 and ε3 = 0, then \(\#({\rm Aut}\ {\cal A}_{\varepsilon_{1},\varepsilon_{2},\varepsilon_{3}})=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bertini. Einführung in die projektive Geometrie mehrdimensionaler Räume. Verlag Seidel & Sohn, Wien, 1924.

    Google Scholar 

  2. D. Betten. 4-dimensionale Translationsebenen. Math. Z., 128, pp. 129–151, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Betten. 4-dimensionale Translationsebenen mit kommutativer Standgruppe. Math. Z., 154, pp. 125–141, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Blaschke. Vorlesungen über Differentialgeometrie III. Springer, Berlin, 1929.

    MATH  Google Scholar 

  5. H. Brauner. Geometrie projektiver Räume II. BI-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1976.

    MATH  Google Scholar 

  6. W. Burau. Algebraische Kurven und Flächen. Walter de Gruyter & Co., Berlin, 1962.

    Google Scholar 

  7. H. Dörrie. Kubische und biquadratische Gleichungen. Leibniz Verlag, München, 1948.

    MATH  Google Scholar 

  8. O. Giering. Vorlesungen über höhere Geometrie. Vieweg, Braunschweig, Wiesbaden, 1982.

    Book  MATH  Google Scholar 

  9. M. J. Kallaher. A note on Bol projective planes. Arch. Math., 20, pp. 329–332, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. M. Kantor. Spreads, translation planes and Kerdock sets. II. SIAM J. Algebraic Discrete Methods, 3, pp. 308–318, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Müller and J. Krames. Konstruktive Behandlung der Regelflächen. (Vorlesungen über Darstellende Geometrie, Bd. III). Deuticke, Leipzig, Wien, 1931.

    Google Scholar 

  12. G. Pickert. Analytische Geometrie. Akad. Verlagsges. Geest & Portig, 7. Aufl., Leipzig, 1976.

  13. R. Riesinger. Beispiele starrer, topologischer Faserungen des reellen projektiven 3-Raums. Geom. Dedicata, 40, pp. 145–163, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Riesinger. Spreads admitting net generating regulizations. Geom. Dedicata, 62, pp.139–155, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Riesinger. Spreads admitting elliptic regulizations. J. Geom., 60, pp.127–145, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Riesinger. Extending the Thas-Walker construction. Bull. Belg. Math. Soc., Simon Stevin, 6, pp.237–247, 1999.

    MathSciNet  MATH  Google Scholar 

  17. W. Wunderlich. Darstellende Geometrie II. B. I., Mannheim, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riesinger, R. A class of topological spreads with unisymplecticly complemented regulization. Results. Math. 38, 307–338 (2000). https://doi.org/10.1007/BF03322014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322014

AMS Subject Classification

Keywords

Navigation