Skip to main content
Log in

Proline Accumulation in Transgenic Tobacco as a Result of Expression of Arabidopsis Δ1-Pyrroline-5-carboxylate synthetase (P5CS) During Osmotic Stress

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The entire coding sequence of the bi-functional enzyme, Δ1-Pyrroline-5-carboxylate synthetase (P5CS) from Arabidopsis thaliana was reverse-transcribed, amplified and expressed under the control of CaMV 35S promoter in transgenic tobacco plants. Several lines were established and tested for the expression of P5CS. Drought and salinity were applied as osmotic stresses and proline content of the transformed plants was compared with that of non-transformed controls. Results indicate that transgenic lines express higher levels of proline and show enhanced resistance to the applied osmotic stress as compared to the non-transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohnert HJ & Jensen RG, TIBTECH, 14 (1996) 89.

    Article  CAS  Google Scholar 

  2. Aspe MP, Aharon GS, Snedden WA & Blumwald E, Science, 285 (1999) 1256.

    Article  Google Scholar 

  3. Zhu J K, Hasegawa PM & Sressan R, Crit Rev Plant Sci, 16 (1997) 253.

    CAS  Google Scholar 

  4. Serrano R, Int J Cytol, 165 (1996) 1.

    Article  CAS  Google Scholar 

  5. Nuccino ML, Rhodes D, McNeil SD & Hanson A, Curr Opin Biotech, 2 (1999) 128.

    Google Scholar 

  6. Smirnoff N, Curr Opin Biotech, 9 (1998) 214.

    Article  PubMed  CAS  Google Scholar 

  7. Tarczynski MC, Jensen RG & Bohnert HJ, Science, 259 (1993) 508.

    Article  PubMed  CAS  Google Scholar 

  8. Aspinall D & Paleg LG, The physiology and biochemistry of drought resistance in plants, Academic press, New York (1981).

    Google Scholar 

  9. Kishor PBK, Hong Z, Miao GH, Hu CAA & Verma DPS, Plant Physiol, 108 (1995) 1387.

    PubMed  CAS  Google Scholar 

  10. Delauney A J & Verma DPS, Plant J, 4 (1993) 215.

    Article  CAS  Google Scholar 

  11. Orcutt DM & Nilsen ET, The physiology of plants under stress, soil and biotic factors, John Wiley, New York (2000).

    Google Scholar 

  12. Paul M & Hasegava A, Ann Rev Plant Physiol Plant Mol Biol, 51 (1996) 463.

    Google Scholar 

  13. Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K & Shinozaki K, Plant J, 18 (1990) 185.

    Article  Google Scholar 

  14. Wallace DM, Methods Enzymol, 12 (1987) 33.

    Article  Google Scholar 

  15. Zonlie H & Verma DPS, Plant Physiol, 122 (2000) 1129.

    Article  Google Scholar 

  16. Taylor CB, Plant Cell, 8 (1996) 1221.

    CAS  Google Scholar 

  17. Clark MS, Plant molecular biology, Springer Publishing-Company, Germany (1997).

    Google Scholar 

  18. Gelvin SB, Schilperoort RA & Verma DPS, Plant molecular biology manual. Kluwer Academic Publishers, New York (1989).

    Book  Google Scholar 

  19. Murashige T & Skoog F, Physiol Plant, 15 (1962) 473.

    Article  CAS  Google Scholar 

  20. Murray MG & Thompson WF, Nucleic Acids Res, 8 (1980) 4321.

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook J & Russell D, Molecular cloning, Cold spring Harbor Laboratory press, New York (2001).

    Google Scholar 

  22. Gallagher SR, GUS protocol: Using the GUS gene as a reporter of gene expression, Academic Press, New York (1990).

    Google Scholar 

  23. Bates L, Plant Soil, 39 (1973) 205.

    Article  CAS  Google Scholar 

  24. Cervera M, Ortega C, Navarro A, Navarro L & Pena L, J Hort Sci Biotech, 75 (2000) 26–30.

    CAS  Google Scholar 

  25. Hammond J, McGarvey P & Yusibov V, Plant biotechnology, Springer, Germany (2000).

    Google Scholar 

  26. Ginzberg I, Stein H & Kapuling Y, Plant Mol Biol, 38 (1998) 755.

    Article  PubMed  CAS  Google Scholar 

  27. Rayapati PJ & Stewart CR, Plant Physiol, 95 (1991) 787.

    Article  PubMed  CAS  Google Scholar 

  28. Wakinmoto BT, Cell, 93 (1998) 321.

    Article  Google Scholar 

  29. Cleard F, Delattre M & Spierer P, EMBO J, 16 (1997) 5280.

    Article  PubMed  CAS  Google Scholar 

  30. Sabl JF & Henikoff S, Genetics, 142 (1996) 447.

    PubMed  CAS  Google Scholar 

  31. Que Q, Wang H & Jorgensen RA, Plant J, 13 (1998) 401.

    Article  CAS  Google Scholar 

  32. Jorgensen RA, Que Q & Stam M, Trends Genet, 15 (1999) 11.

    Article  PubMed  CAS  Google Scholar 

  33. Krysan PJ, Young JC & Jester PJ, J Integrative Biol, 6 (2002) 163.

    CAS  Google Scholar 

  34. Braunstein M, Sobel RE, Allis CD & Broach JR, Mol Cell Biol, 16 (1996) 4349.

    PubMed  CAS  Google Scholar 

  35. Tian L & Chen ZJ, PNAS, 98 (2001) 200.

    Article  PubMed  CAS  Google Scholar 

  36. Sherman JM, James WM & Margaret ED, J Am Soc Hort Sci, 123 (1998) 189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamchi, A., Rastgar Jazii, F., Mousavi, A. et al. Proline Accumulation in Transgenic Tobacco as a Result of Expression of Arabidopsis Δ1-Pyrroline-5-carboxylate synthetase (P5CS) During Osmotic Stress. J. Plant Biochem. Biotechnol. 16, 9–15 (2007). https://doi.org/10.1007/BF03321922

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321922

Key words

Navigation