Skip to main content
Log in

On the Exponential Transform of Multi-Sheeted Algebraic Domains

Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We introduce multi-sheeted versions of algebraic domains and quadrature domains, allowing them to be branched covering surfaces over the Riemann sphere. The two classes of domains turn out to be the same, and the main result states that the extended exponential transform of such a domain agrees, apart from some simple factors, with the extended elimination function for a generating pair of functions. In an example we discuss the algebraic curves associated to level curves of the Neumann oval, and determine which of these give rise to multi-sheeted algebraic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. Aharonov and H. S. Shapiro, Domains in which analytic functions satisfy quadrature identities, J. Analyse Math. 30 (1976), 39–73.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alling and A. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Mathematics 219, Springer-Verlag, 1971.

  3. C. Auderset, Sur le théorème d’approximation de Runge, Enseign. Math. 26 (1980), 219–224.

    MathSciNet  MATH  Google Scholar 

  4. R. W. Carey and J. D. Pincus, An exponential formula for determining functions, Indiana Univ. Math. J. 23 (1974), 1031–1042.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Crowdy, Multipolar vortices and algebraic curves, Proc. Roy. Soc. A 457 (2001), 2337–2359.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Crowdy and M. Cloke, Analytical solutions for distributed multipolar vortex equilibria on a sphere, Physics of Fluids 15 (2003), 22–34.

    Article  MathSciNet  Google Scholar 

  7. D. Crowdy and J. Marshall, On the construction of multiply-connected quadrature domains algebraic curves, SIAM J. Appl. Math. 64 (2004), 1334–1359.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. J. Davis, The Schwarz Function and its Applications, Carus Math. Mongraphs 17, Math. Assoc. Amer., 1974

  9. F. Klein, Riemannsche Fläschen I und II, Vorlesungen Göttingen, Wintersemester 1891–1892 und Sommersemester 1892.

  10. H. Farkas and I. Kra, Riemann Surfaces, Springer Verlag, New York, 1980.

    Book  MATH  Google Scholar 

  11. O. Forster, Riemannsche Flächen, Heidelberger Taschebücher 184, Springer Verlag, Berlin, 1977.

    Google Scholar 

  12. P. Griffith and J. Harris, Principles of Algebraic Geometry, Wiley & Sons, 1978.

  13. A. Grothendieck, Sur certains espaces de fonctions holomorphes I, J. Reine Angew. Math., 192 (1953), 35–64.

    MathSciNet  Google Scholar 

  14. B. Gustafsson, Quadrature identities and the Schottky double, Acta Appl. Math. 1 (1983), 209–240.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Gustafsson, Singular and special points on quadrature domains from an algebraic geometric point of view, J. Analyse Math. 51 (1988), 91–117.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Gustafsson and M. Putinar, An exponential transform and regularity of free boundaries in two dimensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 507–543.

    MathSciNet  MATH  Google Scholar 

  17. B. Gustafsson and V. G. Tkachev, The resultant on compact Riemann surfaces, Comm. Math. Phys. 286 (2009), 313–358.

    Article  MathSciNet  MATH  Google Scholar 

  18. —, On the exponential transform of lemniscates, preprint 2010.

  19. G. Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30–49.

    MathSciNet  MATH  Google Scholar 

  20. J. Langer and D. Singer, Foci and foliations of real algebraic curves, Milan J. Math. 75 (2007), 225–271.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Levine and Y. Peres, Scaling limits for internal aggregation models with multiple sources, J. Anal. Math. 111 (2010), 151–219.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Mineev-Weinstein, M. Putinar, R. Teodorescu, Random matrices in 2D, Laplacian growth and operator theory, J. Phys. A 41 (2008), 74 pp.

    Google Scholar 

  23. M. Namba, Geometry of Projective Algebraic Curves, Marcel Dekker, New York, 1984.

    MATH  Google Scholar 

  24. C. Neumann, Uber das logarithmische Potential einer gewissen Ovalfläche, Abh. der math.-phys. Klasse der Königl. Sächs. Gesellsch. der Wiss. zu Leipzig 59 (1907), 278–312.

    Google Scholar 

  25. —, Uber das logarithmische Potential einer gewissen Ovalfläche, Zweite Mitteilung, ibib. 60 (1908), 53–56; Dritte Mitteilung, ibid. 240–247.

  26. M. Putinar, On a class of finitely determined planar domains, Math. Res. Lett. 1 (1994), 389–398.

    MathSciNet  MATH  Google Scholar 

  27. M. Putinar, Extremal solutions of the two-dimensional L-problem of moments, J. Funct. Anal. 136 (1996), 331–364.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Putinar, Extremal solutions of the two-dimensional L-problem of moments, II, J. Approx. Theory 92 (1998), 38–58.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Rodin, The Riemann Boundary Problem on Riemann Surfaces, Mathematics and its Applications 16, Reidel, Dordrecht, 1988.

    Google Scholar 

  30. M. Sakai, Null quadrature domains, J. Analyse Math.40 (1981), 144–154.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Sakai, Quadrature Domains, Lect. Notes Math. 934, Springer-Verlag, Berlin-Heidelberg, 1982.

    Google Scholar 

  32. —, Finiteness of the family of simply connected quadrature domains, in: J. Kral, I. Netuka and J. Vesely (eds.), Potential Theory, Plenum Publishing Corporation, 1988, pp. 295–305.

  33. M. Schiffer and M. C. Spencer, Functionals of Finite Riemann Surfaces, Princeton University Press, Princeton, 1954.

    MATH  Google Scholar 

  34. F. Schottky, Uber die conforme Abbildung mehrfach zusammenhängender ebener Flächen, Crelles Journal 83 (1877), 300–351.

    Google Scholar 

  35. J.-P. Serre, Un théorème de dualité, Comm. Math. Helv. 29 (1955), 9–26.

    Article  MATH  Google Scholar 

  36. H. S. Shapiro, The Schwarz Function and its Generalization to Higher Dimensions, Uni. of Arkansas Lect. Notes Math. Vol. 9, Wiley, New York, 1992.

    Google Scholar 

  37. J. Silva, As Funções Analíticas e a Analíse Functional, Port. Math. 9 (1950), 1–130.

    MATH  Google Scholar 

  38. A. N. Varchenko and P. I. Etingof, Why the Boundary of a Round Drop Becomes a Curve of Order Four, American Mathematical Society AMS University Lecture Series, Vol. 3, Providence, Rhode Island, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Gustafsson.

Additional information

This research has been supported by the Swedish Research Council, the Göran Gustafsson Stiftelse, and is part of the European Science Foundation Networking programme “Harmonic and Complex Analysis and Applications HCAA”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafsson, B., Tkachev, V.G. On the Exponential Transform of Multi-Sheeted Algebraic Domains. Comput. Methods Funct. Theory 11, 591–615 (2012). https://doi.org/10.1007/BF03321877

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321877

En]Keywords

2000 MSC

Navigation