Skip to main content
Log in

Error Analysis of the Bergman Kernel Method with Singular Basis Functions

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let G be a bounded Jordan domain in the complex plane with a piecewise analytic boundary. We present theoretical estimates and numerical evidence for certain phenomena, regarding the application of the Bergman kernel method with algebraic and pole singular basis functions, for approximating the conformal mapping of G onto the normalized disk. Thereby, we complete the task of providing full theoretical justification of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Andrievskiĭ and D. Gaier, Uniform convergence of Bieberbach polynomials in domains with piecewise quasianalytic boundary, Mitt. Math. Sem. Giessen 211 (1992), 49–60.

    Google Scholar 

  2. D. Gaier, Konstruktive Methoden der konformen Abbildung, Springer Tracts in Natural Philosophy, Vol. 3, Springer-Verlag, Berlin, 1964.

    Book  Google Scholar 

  3. D. Gaier, Lectures on Complex Approximation, Birkhäuser Boston Inc., Boston, MA, 1987.

    Book  MATH  Google Scholar 

  4. D. Gaier, On a polynomial lemma of Andrievskiĭ, Arch. Math. (Basel) 49 no.2 (1987), 119–123.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Gaier, On the convergence of the Bieberbach polynomials in regions with corners, Constr. Approx. 4 no.3 (1988), 289–305.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Gaier, Polynomial approximation of conformal maps, Constr. Approx. 14 no.1 (1998), 27–40.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 no.2 (1999), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Gustafsson, M. Putinar, E. Saff, and N. Stylianopoulos, Bergman polynomials on an archipelago: Estimates, zeros and shape reconstruction, Adv Math. 222 (2009), 1405–1460.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. S. Lehman, Development of the mapping function at an analytic corner, Pacific J. Math. 7 (1957), 1437–1449.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. L. Levin, E. B. Saff and N. S. Stylianopoulos, Zero distribution of Bergman orthogonal polynomials for certain planar domains, Constr. Approx. 19 no.3 (2003), 411–435.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Levin, N. Papamichael and A. Sideridis, The Bergman kernel method for the numerical conformal mapping of simply connected domains, J. Inst. Math. Appl. 22 no.2 (1978), 171–187.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. V. Maymeskul, E. B. Saff and N. S. Stylianopoulos, L2 -approximations of power and logarithmic functions with applications to numerical conformal mapping, Numer. Math. 91 no.3 (2002), 503–542.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Miña-Díaz, E. B. Saff and N. S. Stylianopoulos, Zero distributions for polynomials orthogonal with weights over certain planar regions, Comput. Methods Funct. Theory 5 no.1 (2005), 185–221.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Papamichael, Dieter Gaier’s contributions to numerical conformal mapping, Comput. Methods Funct. Theory 3 no.1–2 (2003), 1–53.

    MathSciNet  MATH  Google Scholar 

  15. N. Papamichael and C. A. Kokkinos, Two numerical methods for the conformal mapping of simply-connected domains, Comput. Methods Appl. Mech. Engrg. 28 no.3 (1981), 285–307.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Papamichael and M. K. Warby, Stability and convergence properties of Bergman kernel methods for numerical conformal mapping, Numer. Math. 48 no.6 (1986), 639–669.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Papamichael, M. K. Warby and D. M. Hough, The treatment of corner and pole-type singularities in numerical conformal mapping techniques, J. Comput. Appl. Math. 14 no.1–2 (1986), 163–191; Special issue on numerical conformal mapping.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. B. Saff, Polynomials of interpolation and approximation to meromorphic functions, Trans. Amer. Math. Soc. 143 (1969), 509–522.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. B. Saff and N. S. Stylianopoulos, Asymptotics for polynomial zeros: Beware of predictions from plots, Comput. Methods Funct. Theory 8 no.2 (2008), 185–221.

    Article  MathSciNet  Google Scholar 

  20. N. S. Stylianopoulos, The stability of an Arnoldi Gram-Schmidt method for constructing orthonormal complex polynomials, in preparation.

  21. P. K. Suetin, Series of Faber Polynomials, Analytical Methods and Special Functions, vol. 1, Gordon and Breach Science Publishers, Amsterdam, 1998.

    Google Scholar 

  22. J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Fourth edition, American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis A. Lytrides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lytrides, M.A., Stylianopoulos, N.S. Error Analysis of the Bergman Kernel Method with Singular Basis Functions. Comput. Methods Funct. Theory 11, 487–526 (2012). https://doi.org/10.1007/BF03321873

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321873

En]Keywords

2000 MSC

Navigation