Abstract
Let G be a bounded Jordan domain in the complex plane with a piecewise analytic boundary. We present theoretical estimates and numerical evidence for certain phenomena, regarding the application of the Bergman kernel method with algebraic and pole singular basis functions, for approximating the conformal mapping of G onto the normalized disk. Thereby, we complete the task of providing full theoretical justification of this method.
Similar content being viewed by others
References
V. V. Andrievskiĭ and D. Gaier, Uniform convergence of Bieberbach polynomials in domains with piecewise quasianalytic boundary, Mitt. Math. Sem. Giessen 211 (1992), 49–60.
D. Gaier, Konstruktive Methoden der konformen Abbildung, Springer Tracts in Natural Philosophy, Vol. 3, Springer-Verlag, Berlin, 1964.
D. Gaier, Lectures on Complex Approximation, Birkhäuser Boston Inc., Boston, MA, 1987.
D. Gaier, On a polynomial lemma of Andrievskiĭ, Arch. Math. (Basel) 49 no.2 (1987), 119–123.
D. Gaier, On the convergence of the Bieberbach polynomials in regions with corners, Constr. Approx. 4 no.3 (1988), 289–305.
D. Gaier, Polynomial approximation of conformal maps, Constr. Approx. 14 no.1 (1998), 27–40.
D. Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 no.2 (1999), 265–277.
B. Gustafsson, M. Putinar, E. Saff, and N. Stylianopoulos, Bergman polynomials on an archipelago: Estimates, zeros and shape reconstruction, Adv Math. 222 (2009), 1405–1460.
R. S. Lehman, Development of the mapping function at an analytic corner, Pacific J. Math. 7 (1957), 1437–1449.
A. L. Levin, E. B. Saff and N. S. Stylianopoulos, Zero distribution of Bergman orthogonal polynomials for certain planar domains, Constr. Approx. 19 no.3 (2003), 411–435.
D. Levin, N. Papamichael and A. Sideridis, The Bergman kernel method for the numerical conformal mapping of simply connected domains, J. Inst. Math. Appl. 22 no.2 (1978), 171–187.
V. V. Maymeskul, E. B. Saff and N. S. Stylianopoulos, L2 -approximations of power and logarithmic functions with applications to numerical conformal mapping, Numer. Math. 91 no.3 (2002), 503–542.
E. Miña-Díaz, E. B. Saff and N. S. Stylianopoulos, Zero distributions for polynomials orthogonal with weights over certain planar regions, Comput. Methods Funct. Theory 5 no.1 (2005), 185–221.
N. Papamichael, Dieter Gaier’s contributions to numerical conformal mapping, Comput. Methods Funct. Theory 3 no.1–2 (2003), 1–53.
N. Papamichael and C. A. Kokkinos, Two numerical methods for the conformal mapping of simply-connected domains, Comput. Methods Appl. Mech. Engrg. 28 no.3 (1981), 285–307.
N. Papamichael and M. K. Warby, Stability and convergence properties of Bergman kernel methods for numerical conformal mapping, Numer. Math. 48 no.6 (1986), 639–669.
N. Papamichael, M. K. Warby and D. M. Hough, The treatment of corner and pole-type singularities in numerical conformal mapping techniques, J. Comput. Appl. Math. 14 no.1–2 (1986), 163–191; Special issue on numerical conformal mapping.
E. B. Saff, Polynomials of interpolation and approximation to meromorphic functions, Trans. Amer. Math. Soc. 143 (1969), 509–522.
E. B. Saff and N. S. Stylianopoulos, Asymptotics for polynomial zeros: Beware of predictions from plots, Comput. Methods Funct. Theory 8 no.2 (2008), 185–221.
N. S. Stylianopoulos, The stability of an Arnoldi Gram-Schmidt method for constructing orthonormal complex polynomials, in preparation.
P. K. Suetin, Series of Faber Polynomials, Analytical Methods and Special Functions, vol. 1, Gordon and Breach Science Publishers, Amsterdam, 1998.
J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Fourth edition, American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lytrides, M.A., Stylianopoulos, N.S. Error Analysis of the Bergman Kernel Method with Singular Basis Functions. Comput. Methods Funct. Theory 11, 487–526 (2012). https://doi.org/10.1007/BF03321873
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03321873