Skip to main content
Log in

Universality and Cesàro Summability Emmanouil Katsoprinakis, Vasilis Nestoridis and Christos Papachristo doulos

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let Ω be an arbitrary domain in the complex plane, Ω ≠ ℂ, and ζ ∈ Ω. Let R = dist(ζ, ∂Ω) Ω (0, +∞), C(ζ, R) = {z ∈ ℂ: |zζ| = R} and J(Ω, ζ) = ∂Ω ∩ C(ζ, R). If f is a holomorphic function in Ω, then its Taylor series with center at Ω, Σ n=0 c n (zζ)n, universal with respect to J(Ω, ζ), if the sequence of its partial sums approximates uniformly any continuous function h: K → ℂ, where K is any compact subset of J(ζ, ζ) with connected complement. In this paper, first we prove the existence of such universal functions in Ω. Secondly, if z 0K, we give sufficient conditions on z 0 and K which guarantee that the above Taylor series of the universal function f is not (C, a)-summable for every a > − 1. Finally, we give examples of Taylor series Σ n=0 c n z n converging on \(\mathbb{D} = \left\{ {z \in \mathbb{C}:\left| z \right| < 1} \right\}\), which are universal for a finite subset K of {z ℂ: |z| 1}, such that the series Σ n=0 c n z 0 n is (C, a)-summable at every point \(z_0 \in K \cap \mathbb{T},\mathbb{T} = \left\{ {z \in \mathbb{C}:\left| z \right| = 1} \right\}\), and every a > 1 and some extensions of this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bayart, Universal Taylor series on general doubly connected domains, Bull. London Math. Soc. 37 no.6 (2005), 878–884.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Bayart, Boundary behavior and Cesàro means of universal Taylor series, Rev. Mat. Comput. 19 no.1 (2006), 235–247.

    MathSciNet  MATH  Google Scholar 

  3. F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis and Ch. Papadimitropoulos, Abstract theory of universal series and applications, Proc. London Math. Soc. (3) 96 no.2 (2008), 417–463.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Chui and M. N. Parnes, Approximation by overconvergence of power series, J. Math. Anal. Appl. 36 (1971), 693–696.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Costakis, Some remarks on universal functions and Taylor series, Math. Proc. Camb. Philos. Soc. 128 no.1 (2000), 157–175.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Gehlen, W. Luh and J. Müller, On the existence of O-universal functions, Complex Var. Theory Appl. 41 no.1 (2000), 81–90.

    Article  MATH  Google Scholar 

  7. G. H. Hardy, Divergent Series, Oxford University Press, London, 1967.

    Google Scholar 

  8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (fourth edition), Oxford University Press, London, 1968.

    Google Scholar 

  9. E. S. Katsoprinakis, Coincidence of some classes of universal functions, Rev. Mat. Comput. 22 no.2 (2009), 427–445.

    MathSciNet  MATH  Google Scholar 

  10. E. S. Katsoprinakis and M. Papadimitrakis, Extensions of a theorem of Marcinkiewicz-Zygmund and of Rogosinski’s formula and an application to universal Taylor series, Proc. Amer. Math. Soc. 127 no.7 (1999), 2083–2090.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Luh, Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten, Mitt. Math. Sem. Giessen 88 (1970), i+56 (in German).

    MathSciNet  Google Scholar 

  12. A. Melas, Universal functions on nonsimply connected domains, Anal. Inst. Fourier (Grenoble) 51 no.6 (2001), 1539–1551.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Melas and V. Nestoridis, On various types of universal Taylor series, Complex Var. Theory Appl. 44 no.3 (2001), 245–258.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Melas and V. Nestoridis, Universality of Taylor series as a generic property of holomorphic functions, Adv. Math. 157 no.2 (2001), 138–176.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Melas, V. Nestoridis and I. Papadoperakis, Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. d’Analyse Math. 73 (1997), 187–202.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Nestoridis, Universal Taylor series, Ann. Inst. Fourier 46 no.5 (1996), 1293–1306.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Nestoridis, An extension of the notion of universal Taylor series, in: Computational Methods and Function Theory 1997 (Nicosia, Cyprus), Ser. Approx. Decompos., vol. 11, World Sci. Publishing, River Edge, NJ, 1999, pp. 421–430.

    Google Scholar 

  18. V. Nestoridis, Non extendable holomorphic functions, Math. Proc. Camb. Philos. Soc. 139 no.2 (2005), 351–360.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Nestoridis, A strong notion of universal Taylor series, J. London Math. Soc. 68 no.3 (2003), 712–724.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Nestoridis and Ch. Papachristodoulos, Universal Taylor series on arbitrary planar domains, C. R. Math. 347 (2009), 363–367.

    MathSciNet  MATH  Google Scholar 

  21. W. Rudin, Real and Complex Analysis (2nd edition), McGraw-Hill, 1974; reprint 1983.

  22. L. Tomm and R. Trautner, A universal power series for approximation of measurable functions, Analysis 2 (1982), 1–6.

    MathSciNet  MATH  Google Scholar 

  23. N. Tsirivas, Universal Faber and Taylor series on an unbounded domain of infinite connectivity, Complex Var. Elliptic Eq. 56 no.6 (2011), 533–542.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Vlachou, A universal Taylor series in the doubly connected domain C {n}, Complex Var. Theory Appl. 47 no.2 (2002), 123–129.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Zygmund, Trigonometric series, Vol. I, II, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988; reprint of the 979 edition.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Katsoprinakis.

Additional information

Dedicated to N. Papamichael

Research supported by the EPEAEK program “Pythagoras II”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsoprinakis, E., Nestoridis, V. & Papachristodoulos, C. Universality and Cesàro Summability Emmanouil Katsoprinakis, Vasilis Nestoridis and Christos Papachristo doulos. Comput. Methods Funct. Theory 12, 419–448 (2012). https://doi.org/10.1007/BF03321836

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321836

En]Keywords

2000 MSC

Navigation