Skip to main content

Level Sets, a Gauss-Fourier Conjecture, and a Counter-Example to a Conjecture of Borcea and Shapiro

Abstract

We use level sets to give a counter-example to a conjecture of J. Borcea and B. Shapiro. In particular we show that there are real polynomials P such that there is a chord of the level set Im P′(z)/P(z) = 0 that does not have a non-real zero of P lying on it. In addition, we use level sets to show that there are no bounded components of the set z: Im z > 0 and Im Q(z) > 0 where Q = zf/f ′ and f is a real entire function.

This is a preview of subscription content, access via your institution.

References

  1. J. Borcea and B. Shapiro, Classifying real polynomial pencils, Int. Math. Res. Not. 69 (2004), 3689–3708.

    Article  MathSciNet  Google Scholar 

  2. X. Buff, Virtually repelling fixed points, Publ. Mat. 47 no.1 (2003), 195–209.

    Article  MathSciNet  Google Scholar 

  3. T. Craven, G. Csordas and W. Smith, The zeros of derivatives of entire functions and the Pólya-Wiman conjecture, Ann. of Math. 125 (1987), 405–431.

    Article  MathSciNet  Google Scholar 

  4. S. Edwards, Using level curves to count non-real zeros of f″, in: Advances in Analysis: Proceedings of the Fourth ISAAC Congress, World Scientific Publishing Co., Pte. Ltd., 2005, 531–537.

  5. S. Edwards and S. Hellerstein, Non-real zeros of derivatives of real entire functions and the Pólya-Wiman conjectures, Complex Variables 47 (2002), 25–57.

    MathSciNet  MATH  Google Scholar 

  6. A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math. 155 (2002), 105–129.

    Article  MathSciNet  Google Scholar 

  7. C. F. Gauss, Werke 3 (1886), 119–121.

    Google Scholar 

  8. C. F. Gauss, Werke 10 part I (1866), 129–134.

    Google Scholar 

  9. A. Hinkkanen, Reality of zeros of derivatives of meromorphic functions, Ann. Acad. Sci. Fenn. Math. Ser. AI 22 1997) No.1, 21–38.

    MathSciNet  MATH  Google Scholar 

  10. A. Hinkkanen, Zeros of derivatives of strictly non-real meromorphic functions, Ann. Acad. Sci. Fenn. Math. Ser. AI 22 1997) No.1, 39–74.

    MathSciNet  MATH  Google Scholar 

  11. A. Hinkkanen, Iteration, level sets, and zeros of derivatives of meromorphic functions, Ann. Acad. Sci. Fenn. Math. Ser. AI 23 1998) No.2, 317–388.

    MathSciNet  MATH  Google Scholar 

  12. A. Hinkkanen, Zeros of derivatives of meromorphic functions with one pole, Complex Variables 37 (1998), 279–369.

    MathSciNet  MATH  Google Scholar 

  13. J. Langley, Solution of a Problem of Edwards and Hellerstein, Comp. Methods Funct. Theory 6 no.1 (2006), 243–252.

    Article  MathSciNet  Google Scholar 

  14. B. Palka, An Introduction to Complex Function Theory, Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  15. T. Sheil-Small, Complex Polynomials, Cambridge University Press, New York, 2002.

    Book  Google Scholar 

  16. T. Sheil-Small, On the zeros of the derivatives of real entire functions and Wiman’s conjecture, Ann. of Math. 129 (1989), 179–193.

    Article  MathSciNet  Google Scholar 

  17. M. Tyaglov, On the number of real critical points of logarithmic derivatives and the Hawai’i conjecture, preprint, arXiv:0902.0413.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Edwards.

Additional information

This material is based upon work supported by the National Science Foundation under Grant No. 0758226. This research was also supported by the grant 07365 from the Campus Research Board of the University of Illinois at Urbana—Champaign.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edwards, S., Hinkkanen, A. Level Sets, a Gauss-Fourier Conjecture, and a Counter-Example to a Conjecture of Borcea and Shapiro. Comput. Methods Funct. Theory 11, 1–12 (2011). https://doi.org/10.1007/BF03321786

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321786

Keywords

2000 MSC