Skip to main content
Log in

Logarithmic Singularities and the Zeros of the Second Derivative

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

An estimate is obtained for the growth of a meromorphic function near to a logarithmic singularity of the derivative. This estimate is applied to show that if f is meromorphic of finite lower order in the plane, such that the second derivative f″ has finitely many zeros and the multiplicities of the poles z of f grow at most polynomially in ¦z¦, then f has finitely many poles. Subsequent results then consider the zeros of linear differential polynomials F = f (k)+a k−1 f (k−1)+…+ a 0 f, where f is transcendental and meromorphic of finite order in the plane, and the coefficients a j are constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Brüggemann, Proof of a conjecture of Frank and Langley concerning zeros of meromorphic functions and linear differential polynomials, Analysis 12 (1992) no. 1/2, 5–30.

    MathSciNet  MATH  Google Scholar 

  3. G. Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Zeit. 149 (1976), 29–36.

    Article  MATH  Google Scholar 

  4. G. Frank, Über die Nullstellen von linearen Differentialpolynomen mit meromorphen Koeffizienten, Complex Methods on Partial Differential Equations, 39–48, Math. Res. 53, Akademie-Verlag, Berlin 1989.

    Google Scholar 

  5. G. Frank and S. Hellerstein, On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3) 53 (1986), 407–428.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Frank, W. Hennekemper and G. Polloczek, Über die Nullstellen meromorpher Funktionen and ihrer Ableitungen, Math. Ann. 225 (1977), 145–154.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Frank and G. Weissenborn, Rational deficient functions of meromorphic functions, Bull. London Math. Soc. 18 (1986), 29–33.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. K. Hayman, Meromorphic Functions, Oxford at the Clarendon Press, 1964.

  9. J. D. Hinchliffe, The Bergweiler-Eremenko theorem for finite lower order, Result. Math. 43 (2003), 121–128.

    MathSciNet  MATH  Google Scholar 

  10. F. R. Keogh, A property of bounded schlicht functions, J. London Math. Soc. 29 (1954), 379–382.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. K. Langley, Proof of a conjecture of Hayman concerning f and f″, J. London Math. Soc. (2)48 (1993), 500–514.

    Article  MathSciNet  Google Scholar 

  12. J. K. Langley, On second order linear differential polynomials, Result. Math. 26 (1994), 51–82.

    MathSciNet  MATH  Google Scholar 

  13. J. K. Langley, On the zeros of the second derivative, Proc. Roy. Soc. Edinburgh 127A (1997), 359–368.

    Article  MathSciNet  Google Scholar 

  14. J. K. Langley, The second derivative of a meromorphic function of finite order, Bulletin London Math. Soc. 35 (2003), 97–108.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. K. Langley and John Rossi, Critical points of certain discrete potentials, Complex Variables 49 (2004), 621–637.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. K. Langley and D. F. Shea, On multiple points of meromorphic functions, J. London Math. Soc. (2) 57 (1998), 371–384.

    Article  MathSciNet  Google Scholar 

  17. R. Nevanlinna, Eindeutige analytische Funktionen, 2. Auflage, Springer, Berlin, 1953.

    Book  MATH  Google Scholar 

  18. G. Pólya, Über die Nullstellen sukzessiver Derivierten,:Math. Z. 12 (1922), 36–60.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften 299, Springer, Berlin, 1992.

    Google Scholar 

  20. N. Steinmetz, On the zeros of a certain Wronskian, Bull. London Math. Soc. 20 (1988), 525–531.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Langley.

Additional information

Research supported by Engineering and Physical Sciences Research Council grant EP/D065321/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langley, J. Logarithmic Singularities and the Zeros of the Second Derivative. Comput. Methods Funct. Theory 9, 565–578 (2009). https://doi.org/10.1007/BF03321745

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321745

Keywords

2000 MSC

Navigation