Abstract
We relate some classical extremal problems on the Hardy space to norms of truncated Toeplitz operators and complex symmetric operators.
References
D. Aharonov, C. Bénéteau, D. Khavinson and H. Shapiro, Extremal Problems for Nonvanishing Functions in Bergman Spaces, Selected topics in complex analysis, Oper. Theory Adv. Appl., vol. 158, Birkhäuser, Basel, 2005, pp. 59–86.
J. M. Anderson and J. Rovnyak, On generalized Schwarz-Pick estimates, Mathematika 53 (2006) (2007) no.1, 161–168.
V. Andreev and A. L. Matheson, Quadratic extremal problems on the Dirichlet space, Complex Variables Theory Appl. 48 (2003) no.9, 767–776.
C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 (2004) no.1, 1–19.
C. Bénéteau and D. Khavinson, A survey of certain extremal problems for non-vanishing analytic functions, Complex and Harmonic Analysis, DEStech Publ., Inc., Lancaster, PA, 2007, pp. 45–61.
J. A. Cima, A. L. Matheson and W. T. Ross, The Cauchy Transform, Mathematical Surveys and Monographs, vol. 125, American Mathematical Society, Providence, RI, 2006.
J. A. Cima and W. T. Ross, The Backward Shift on the Hardy Space, Mathematical Surveys and Monographs, vol. 79, American Mathematical Society, Providence, RI, 2000.
D. N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191.
J. B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985.
R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator., Ann. Inst. Fourier (Grenoble) 20 (1970) no. fasc. 1, 37–76.
P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970.
E. Egerváry, Über gewisse Extremumprobleme der Funktionentheorie,:Math. Ann. 99 (1928) no.1, 542–561.
L. Fejér, Über gewisse Minimumprobleme der Funktionentheorie,:Math. Ann. 97 (1927) no.1, 104–123.
S. D. Fisher, A quadratic extremal problem on the Dirichlet space, Complex Variables Theory Appl. 26 (1995) no.4, 367–380.
S.R. Garcia, Conjugation and Clark Operators, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 67–111.
S.R. Garcia, Approximate antilinear eigenvalue problems and related inequalities, Proc. Amer. Math. Soc. 136 (2008) no.1, 171–179 (electronic).
S.R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006) no.3, 1285–1315 (electronic).
S.R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007) no.8, 3913–3931 (electronic).
J. Garnett, Bounded Analytic Functions, first ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007.
G. Golusin, Estimates for analytic functions with bounded mean of the modulus, Trav. Inst. Math. Stekloff 18 (1946), 87 pp.
G. Golusin, On the problem of Carathéodory- Fejér and similar problems, Rec. Math. [Mat. Sbornik] N. S. 18(60) (1946), 213–226.
R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
S. Ya Khavinson, Two papers on extremal problems in complex analysis, Amer. Math. Soc. Transl. 129 (1986) no.2.
P. Koosis, Introduction to Hp Spaces, second ed., Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge, 1998.
B. D. MacCluer, K. Stroethoff and R. Zhao, Schwarz-Pick type estimates, Complex Variables Theory Appl. 48 (2003) no.8, 711–730.
A. J. Macintyre and W. W. Rogosinski, Some elementary inequalities in function theory, Edinburgh Math. Notes 1945 (1945) no.35, 1–3.
A. J. Macintyre and W. W. Rogosinski, Extremum problems in the theory of analytic functions, Acta Math. 82 (1950), 275–325.
J. M. McDougall, Orthogonal polynomials and quadratic extremal problems, Trans. Amer. Math. Soc. 354 (2002), no.6, 2341–2357 (electronic).
N. Nikolski, Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.
N. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol. 1, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002.
N. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol. 2, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002.
A. Poltoratski and D. Sarason, Aleksandrov-Clark Measures, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 1–14.
M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Second ed., Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980, Functional analysis.
W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic functions, Acta Math. 90 (1953), 287–318.
W. T. Ross and H. S. Shapiro, Generalized Analytic Continuation, University Lecture Series, vol. 25, American Mathematical Society, Providence, RI, 2002.
St. Ruscheweyh, Two remarks on bounded analytic functions, Serdica 11 (1985) no.2, 200–202.
D. Sarason, Generalized interpolation in H∞, Trans. Amer. Math. Soc. 127 (1967), 179–203.
D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley & Sons Inc., New York, 1994,, A Wiley-Interscience Publication.
D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 (2007) no.4, 491–526.
S. Takenaka, On the orthonormal functions and a new formula of interpolation, Jap. J. Math. 2 (1925), 129–145.
V. M. Terpigoreva, Extremal problems in certain subclasses of analytic functions of bounded form, Litovsk. Mat. Sb. 10 (1970), 171–187.
Author information
Authors and Affiliations
Corresponding author
Additional information
First author partially supported by National Science Foundation Grant DMS-0638789.
Rights and permissions
About this article
Cite this article
Garcia, S.R., Ross, W.T. A Non-Linear Extremal Problem on the Hardy Space. Comput. Methods Funct. Theory 9, 485–524 (2009). https://doi.org/10.1007/BF03321742
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03321742
Keywords
- Extremal problem
- truncated Toeplitz operator
- Toeplitz operator
- Clark operator
- Aleksandrov-Clark measure
- reproducing kernel
- complex symmetric operator
- conjugation