Skip to main content
Log in

Abstract

We relate some classical extremal problems on the Hardy space to norms of truncated Toeplitz operators and complex symmetric operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. Aharonov, C. Bénéteau, D. Khavinson and H. Shapiro, Extremal Problems for Nonvanishing Functions in Bergman Spaces, Selected topics in complex analysis, Oper. Theory Adv. Appl., vol. 158, Birkhäuser, Basel, 2005, pp. 59–86.

    Article  Google Scholar 

  2. J. M. Anderson and J. Rovnyak, On generalized Schwarz-Pick estimates, Mathematika 53 (2006) (2007) no.1, 161–168.

    Article  MathSciNet  Google Scholar 

  3. V. Andreev and A. L. Matheson, Quadratic extremal problems on the Dirichlet space, Complex Variables Theory Appl. 48 (2003) no.9, 767–776.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 (2004) no.1, 1–19.

    MathSciNet  MATH  Google Scholar 

  5. C. Bénéteau and D. Khavinson, A survey of certain extremal problems for non-vanishing analytic functions, Complex and Harmonic Analysis, DEStech Publ., Inc., Lancaster, PA, 2007, pp. 45–61.

    Google Scholar 

  6. J. A. Cima, A. L. Matheson and W. T. Ross, The Cauchy Transform, Mathematical Surveys and Monographs, vol. 125, American Mathematical Society, Providence, RI, 2006.

    Google Scholar 

  7. J. A. Cima and W. T. Ross, The Backward Shift on the Hardy Space, Mathematical Surveys and Monographs, vol. 79, American Mathematical Society, Providence, RI, 2000.

    Google Scholar 

  8. D. N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985.

    Google Scholar 

  10. R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator., Ann. Inst. Fourier (Grenoble) 20 (1970) no. fasc. 1, 37–76.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970.

    MATH  Google Scholar 

  12. E. Egerváry, Über gewisse Extremumprobleme der Funktionentheorie,:Math. Ann. 99 (1928) no.1, 542–561.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Fejér, Über gewisse Minimumprobleme der Funktionentheorie,:Math. Ann. 97 (1927) no.1, 104–123.

    Article  MathSciNet  Google Scholar 

  14. S. D. Fisher, A quadratic extremal problem on the Dirichlet space, Complex Variables Theory Appl. 26 (1995) no.4, 367–380.

    Article  MathSciNet  MATH  Google Scholar 

  15. S.R. Garcia, Conjugation and Clark Operators, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 67–111.

    Article  Google Scholar 

  16. S.R. Garcia, Approximate antilinear eigenvalue problems and related inequalities, Proc. Amer. Math. Soc. 136 (2008) no.1, 171–179 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  17. S.R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006) no.3, 1285–1315 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  18. S.R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007) no.8, 3913–3931 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Garnett, Bounded Analytic Functions, first ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007.

    Google Scholar 

  20. G. Golusin, Estimates for analytic functions with bounded mean of the modulus, Trav. Inst. Math. Stekloff 18 (1946), 87 pp.

    MathSciNet  Google Scholar 

  21. G. Golusin, On the problem of Carathéodory- Fejér and similar problems, Rec. Math. [Mat. Sbornik] N. S. 18(60) (1946), 213–226.

    MathSciNet  Google Scholar 

  22. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  23. S. Ya Khavinson, Two papers on extremal problems in complex analysis, Amer. Math. Soc. Transl. 129 (1986) no.2.

    Google Scholar 

  24. P. Koosis, Introduction to Hp Spaces, second ed., Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  25. B. D. MacCluer, K. Stroethoff and R. Zhao, Schwarz-Pick type estimates, Complex Variables Theory Appl. 48 (2003) no.8, 711–730.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. J. Macintyre and W. W. Rogosinski, Some elementary inequalities in function theory, Edinburgh Math. Notes 1945 (1945) no.35, 1–3.

    Article  MathSciNet  Google Scholar 

  27. A. J. Macintyre and W. W. Rogosinski, Extremum problems in the theory of analytic functions, Acta Math. 82 (1950), 275–325.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. M. McDougall, Orthogonal polynomials and quadratic extremal problems, Trans. Amer. Math. Soc. 354 (2002), no.6, 2341–2357 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Nikolski, Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.

    Book  Google Scholar 

  30. N. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol. 1, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  31. N. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol. 2, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  32. A. Poltoratski and D. Sarason, Aleksandrov-Clark Measures, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 1–14.

    Chapter  Google Scholar 

  33. M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Second ed., Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980, Functional analysis.

    MATH  Google Scholar 

  34. W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic functions, Acta Math. 90 (1953), 287–318.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. T. Ross and H. S. Shapiro, Generalized Analytic Continuation, University Lecture Series, vol. 25, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  36. St. Ruscheweyh, Two remarks on bounded analytic functions, Serdica 11 (1985) no.2, 200–202.

    MathSciNet  MATH  Google Scholar 

  37. D. Sarason, Generalized interpolation in H, Trans. Amer. Math. Soc. 127 (1967), 179–203.

    MathSciNet  MATH  Google Scholar 

  38. D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley & Sons Inc., New York, 1994,, A Wiley-Interscience Publication.

    Google Scholar 

  39. D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 (2007) no.4, 491–526.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Takenaka, On the orthonormal functions and a new formula of interpolation, Jap. J. Math. 2 (1925), 129–145.

    Google Scholar 

  41. V. M. Terpigoreva, Extremal problems in certain subclasses of analytic functions of bounded form, Litovsk. Mat. Sb. 10 (1970), 171–187.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Ramon Garcia.

Additional information

First author partially supported by National Science Foundation Grant DMS-0638789.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, S.R., Ross, W.T. A Non-Linear Extremal Problem on the Hardy Space. Comput. Methods Funct. Theory 9, 485–524 (2009). https://doi.org/10.1007/BF03321742

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321742

Keywords

2000 MSC

Navigation