Skip to main content
Log in

How to Find a Measure from its Potential

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We consider the problem of finding a measure from the given values of its logarithmic potential on the support. It is well known that a solution to this problem is given by the generalized Laplacian. The case of our main interest is when the support is contained in a rectifiable curve, and the measure is absolutely continuous with respect to the arclength on this curve. Then the generalized Laplacian is expressed by a sum of normal derivatives of the potential. Such a representation is already available for smooth curves, and we show it holds for any rectifiable curve in the plane. We also relax the assumptions imposed on the potential.

Finding a measure from its potential often leads to another closely related problem of solving a singular integral equation with Cauchy kernel. The theory of such equations is well developed for smooth curves. We generalize this theory to the class of Ahlfors regular curves and arcs, and characterize the bounded solutions on arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bochner, Green-Goursat theorem, Math. Zeit. 63 (1955), 230–242.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bertrand, Equations de Fredholm à intégrales principales au sens de Cauchy, Comptes Rendus, Paris 172 (1921), 1458–1461.

    MATH  Google Scholar 

  3. Yu. D. Burago and V. G. Maz’ya, Potential Theory and Function Theory for Irregular Regions, (Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, Vol. 3), Consultants Bureau, New York, 1969.

    Google Scholar 

  4. Yu. D. Burago, V. G. Maz’ya and V. D. Sapozhnikova, On the theory of simple and double-layer potentials for domains with irregular boundaries, in: V. I. Smirnov (ed.), Boundary Value Problems and Integral Equations, Consultants Bureau, New York, 1968, 1–30.

    Google Scholar 

  5. P. J. Cohen, On Green’s theorem, Proc. Amer. Math. Soc. 10 (1959), 109–112.

    MathSciNet  MATH  Google Scholar 

  6. I. I. Danilyuk, Nonregular Boundary Value Problems in the Plane, Nauka, Moscow, 1975 (in Russian).

    Google Scholar 

  7. G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157–189.

    MATH  Google Scholar 

  8. P. Deift, T. Kreicherbauer and K. T.-R. McLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory 95 (1998), 388–475.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. L. Duren, Theory of Hp Spaces, Dover, New York, 2000.

    MATH  Google Scholar 

  10. D. Gaier, Lectures on Complex Approximation, Birkhäuser, Boston, 1987.

    Book  MATH  Google Scholar 

  11. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, R.I., 1969.

    MATH  Google Scholar 

  12. E. G. Guseinov, The Plemelj-Privalov theorem for the generalized Hölder classes, Sb. Math. 75 (1993), 165–182.

    Article  MathSciNet  Google Scholar 

  13. W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, London, 1976.

    MATH  Google Scholar 

  14. B. V. Hvedelidze, Linear discontinuous boundary problems in the theory of functions, singular integral equations and some of their applications, Trudy Tbiliss. Mat. Inst. Razmadze 23 (1956), 3–158 (in Russian).

    MathSciNet  Google Scholar 

  15. O. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1954.

    Google Scholar 

  16. A. Martínez-Finkelshtein and E. B. Saff, Asymptotic properties of Heine-Stieltjes and Van Vleck polynomials, J. Approx. Theory 118 (2002), 131–151.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. I. Muskhelishvili, Singular Integral Equations, Dover, New York, 1992.

    Google Scholar 

  18. J. Plemelj, Potentialtheoretische Untersuchungen, Preisschr. Jablonowskische Ges. 40, Nr. 16, Leipzig, 1911.

  19. J. Plemelj, Ein Ergänzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend, Monatsh. Math. Phys. 19 (1908), 205–210.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  21. I. E. Pritsker, The Gelfond-Schnirelman method in prime number theory, Canad. J. Math. 57 (2005), 1080–1101.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. E. Pritsker, Weighted energy problem on the unit circle, Constr. Approx. 23 (2006), 103–120.

    Article  MathSciNet  MATH  Google Scholar 

  23. I. I. Privalov, Boundary Properties of Analytic Functions, 2nd ed., Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (in Russian).

    Google Scholar 

  24. J. Radon, Über die Randwertaufgaben beim logarithmischen Potential, Sitzungsber. Akad. Wiss. Wien 128 (1920), 1123–1167.

    Google Scholar 

  25. T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  26. V. V. Salaev, Direct and inverse estimates for the singular Cauchy integral along a closed curve, Math. Notes 19 (1976), 221–231.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. V. Salaev, The singular Cauchy operator over an open curve. N. I. Muskhelishvili’s theorem, Azerbaidzhan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauk 1 (1976), 45–52 (in Russian).

    MathSciNet  Google Scholar 

  28. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  29. V. L. Shapiro, On Green’s theorem, J. London Math. Soc. 32 (1957), 261–269.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal. 47 (1972), 237–254.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pritsker.

Additional information

Dedicated to Professor W. K. Hayman on his 80th birthday

Research was partially supported by the National Security Agency under grant H98230-06-1-0055, and by the Alexander von Humboldt Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritsker, I. How to Find a Measure from its Potential. Comput. Methods Funct. Theory 8, 597–614 (2008). https://doi.org/10.1007/BF03321707

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321707

Keywords

2000 MSC

Navigation