Skip to main content
Log in

Non-Tangential Limits of Bloch Functions

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We give a sufficient condition for a function f in the “little Bloch space” \({\cal B}_0\) to have a finite non-tangential limit at a point ξ with ¦ξ¦ = 1. Our result can be viewed as an “one-sided” theorem of Hall type for the space \({\cal B}_0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.

    MathSciNet  MATH  Google Scholar 

  2. K. F. Barth and P. J. Rippon, Nontangential limits of slowly growing analytic functions, preprint.

  3. K. F. Barth and W. J. Schneider, On the impossibility of extending the Riesz uniqueness theorem to functions of slow growth, Ann. Acad. Sci. Fenn. Ser. A I Math. 432 (1968), 1–9.

    MathSciNet  Google Scholar 

  4. F. Bravo and D. Girela, Some results of Lindelöf type involving the segmental behaviour of analytic functions, Math. proc. Camb. Phil. Soc. 114 (1993), 57–65.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, London, 1966.

    Book  MATH  Google Scholar 

  6. P. L. Duren, Theory of Hp Spaces, Academic Press, New York-London 1970. Reprint: Dover, Mineola, New York, 2000.

    MATH  Google Scholar 

  7. W. H. J. Fuchs, Topics in the Theory of Functions of One Complex Variable, Van Nostrand, 1967.

  8. D. Girela, Non-tangential limits for analytic functions of slow growth in a disc, J. London Math. Soc. (2) 46 (1992), 140–148.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Hall, Sur la mésure harmonique de certains ensembles, Ark. Math. Astr. Fys. 25 A N.28 (1937), 457–458.

    Google Scholar 

  10. W. K. Hayman, Subharmonic Functions, Volume 2, London Math. Soc. Monographs No. 20, Academic Press, 1989.

  11. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Lindelöf, Sur un principe général de l’analyse et ses applications à la théorie de la représentation conforme, Acta Soc. Sci. Fenn. 46 (1915), 1–35.

    Google Scholar 

  13. A. Nicolau, Radial behaviour of harmonic Bloch functions and their area function, Indiana Univ. Math. Jour. 48 no.4 (1999), 1214–1236.

    Article  MathSciNet  Google Scholar 

  14. Ch. Pommerenke, On Bloch functions, J. Lond. Math. Soc. (2) 2 (1970), 689–695.

    MathSciNet  MATH  Google Scholar 

  15. A. Nicolau, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.

    Google Scholar 

  16. A. Nicolau, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Girela.

Additional information

Dedicated to Professor Walter Hayman on the occasion of his 80th birthday

Research supported in part by grants from “El Ministerio de Educación y Ciencia”, Spain (MTM2004-0078, MTM2006-26627-E) and from “La Junta de Andalucía” (FQM-210, P06-FQM-01504).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girela, D. Non-Tangential Limits of Bloch Functions. Comput. Methods Funct. Theory 8, 277–284 (2008). https://doi.org/10.1007/BF03321688

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321688

Keywords

2000 MSC

Navigation