Skip to main content
Log in

Non-Tangential Limits of Slowly Growing Analytic Functions

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We show that if f is an analytic function in the unit disc \(\mathbb{D}\),

$$M\left( {r,f} \right) = \mathcal{O}\left( {\left( {1 - r} \right)^{ - \eta } } \right) as r \to 1, for every \eta > 0,$$

, and

$$\mathop {\sup }\limits_{0 \leqslant r < 1} (1 - r)^s \left| {f'\left( {r\zeta } \right) < \infty } \right|, where \left| \zeta \right| = 1, s < 1,$$

then f has a finite non-tangential limit at ζ. We also show that in this result it is not sufficient to assume that

$$M\left( {r,f} \right) = \mathcal{O}\left( {\left( {1 - r} \right)^{ - \eta } } \right) as r \to 1, for some fixed \eta > 0.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Barth and W. J. Schneider, On the impossibility of extending the Riesz uniqueness theorem to functions of slow growth, Ann. Acad. Sci. Fenn. Ser. A I 432 (1968), 9pp.

    Google Scholar 

  2. F. Bravo and D. Girela, Some results of Lindelöf type involving the segmental behaviour of analytic functions, Math. Proc. Camb. Phil. Soc. 114 (1993), 57–65.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. L. Duren, Theory of H p Spaces, Academic Press, 1970.

  4. J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.

  5. F. W. Gehring, The asymptotic values for analytic functions with bounded characteristic, Quart. J. Math. Oxford (2) 9 (1958), 282–289.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Girela, Non-tangential limits for analytic functions of slow growth in a disc, J. London Math. Soc. 46 (1992), 140–148.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. J. Hallenbeck and T. H. MacGregor, Radial growth and variation of bounded analytic functions, Proc. Edinburgh Math. Soc. 31 (1988), 489–498.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. K. Hayman, Subharmonic Functions, Volume 2, Academic Press, 1989.

  9. O. Lehto and K. I. Virtanen, Boundary behaviour of normal meromorphic functions, Acta Math. 97 (1957), 47–65.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Ortel and W. Schneider, Analytic functions with rectifiable radial images, Proc. Amer. Math. Soc. 103 (1988), 1082–1086.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, 1975.

  12. P. J. Rippon, On a growth condition related to the MacLane class, J. London Math. Soc. 26 (1978), 94–100.

    Article  MathSciNet  Google Scholar 

  13. M. Tsuji, Potential Theory in Modern Function Theory, Chelsea, 1975.

  14. S. E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280–335.

    MathSciNet  Google Scholar 

  15. A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl F. Barth.

Additional information

Dedicated to Professor Walter Hayman on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, K.F., Rippon, P.J. Non-Tangential Limits of Slowly Growing Analytic Functions. Comput. Methods Funct. Theory 8, 85–99 (2008). https://doi.org/10.1007/BF03321672

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321672

Keywords

2000 MSC

Navigation