Skip to main content
Log in

Meromorphic Functions in the Class S and the Zeros of the Second Derivative

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let S denote the class of functions f which are transcendental and meromorphic in the plane and have finitely many critical and asymptotic values. It is shown that if fS has finite lower order and f″/f′ is non-constant then δ(0, f″/f′) = 0. Moreover, the Gol’dberg conjecture holds for a function in S of finite order, at least on a set of logarithmic density 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Barry, The minimum modulus of small integral and subharmonic functions, Proc. London Math. Soc. (3) 12 (1962), 445–495.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), 151–188.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Bergweiler, On the zeros of certain homogeneous differential polynomials, Arch. Math. (Basel) 64 (1995), 199–202.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. F. Collingwood, Sur les valeurs exceptionelles des fonctions enti`eres d’ordre fini, C.R. Acad. Sci. Paris 179 (1924), 1125–1127.

    MATH  Google Scholar 

  6. A. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier Grenoble 42 (1992), 989–1020.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. H. J. Fuchs, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math. 7 (1963), 661–667.

    MathSciNet  MATH  Google Scholar 

  8. W. K. Hayman, Meromorphic Functions, Oxford at the Clarendon Press, 1964.

  9. W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. London Math. Soc. (3) 14A (1965), 93–128.

    Article  MathSciNet  Google Scholar 

  10. W. K. Hayman, Subharmonic Functions Vol. 2, Academic Press, London, 1989.

    Google Scholar 

  11. W. K. Hayman, Multivalent Functions, 2nd edition, Cambridge Tracts in Mathematics 110, Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

  12. J. K. Langley, The zeros of the first two derivatives of a meromorphic function, Proc. Amer. Math. Soc. 124 (1996), 2439–2441.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. K. Langley, The second derivative of a meromorphic function of finite order, Bull. London Math. Soc. 35 (2003), 97–108.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. K. Langley, Deficient values of derivatives of meromorphic functions in the class S, Comput. Methods Funct. Theory 4 (2004), 237–247.

    MathSciNet  MATH  Google Scholar 

  15. E. Mues, Uber eine Defekt-und Verzweigungsrelation für die Ableitung meromorpher Funktionen, Manuscripta Math. 5 (1971), 275–297.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Nevanlinna, Eindeutige analytische Funktionen, 2. Auflage, Springer, Berlin, 1953.

    Book  MATH  Google Scholar 

  17. P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions, Proc. Amer. Math. Soc. 127 (1999), 3251–3258.

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Teichmüller, Eine Umkehrung des zweiten Hauptsatzes der Wertverteilungslehre, Deutsche Mathematik 2 (1937), 96–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Langley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langley, J. Meromorphic Functions in the Class S and the Zeros of the Second Derivative. Comput. Methods Funct. Theory 8, 73–84 (2008). https://doi.org/10.1007/BF03321671

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321671

Keywords

2000 MSC

Navigation