Computational Methods and Function Theory

, Volume 6, Issue 2, pp 301–315 | Cite as

Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains

  • Thomas K. DeLillo
  • Tobin A. Driscoll
  • Alan R. Elcrat
  • John A. Pfaltzgraff
Article

Abstract

We have recently derived a Schwarz-Christoffel formula for the conformal mapping of the exterior of a finite number of disks to the exterior of a set of polygonal curves [5]. In this work we show how to formulate a set of equations for determining the parameters of such a map. A number of examples are computed, including exteriors of multiple slits. We also recall the derivation of the mapping formulae and give a new formula for the doubly connected case.

Key Words

conformal mapping 

2000 MSC

30C30 65E05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer-Verlag, New York 1990.MATHCrossRefGoogle Scholar
  2. 2.
    D. Crowdy, The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains, Proc. Royal Society A 461 (2005), 2653–2678.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    T. K. DeLillo, Schwarz-Christoffel mapping of bounded, multiply connected domains, Comput. Methods Funct. Theory 6 no.2 (2006), 275–300.MathSciNetGoogle Scholar
  4. 4.
    T. K. DeLillo, A. R. Elcrat, and J. A. Pfaltzgraff, Schwarz-Christoffel mapping of the annulus, SIAM Review 43 no.3 (2001), 469–477.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    T. K. DeLillo, A. R. Elcrat, and J. A. Pfaltzgraff, Schwarz-Christoffel mapping of multiply connected domains, J. d’Analyse Math. 94 (2004), 17–47.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    T. K. DeLillo, M. A. Horn, and J. A. Pfaltzgraff, Numerical conformal mapping of multiply connected regions by Fornberg-like methods, Numer. Math. 83 (1999), 205–230.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel Mapping, Cambridge University Press, Cambridge 2002.MATHCrossRefGoogle Scholar
  8. 8.
    G. M. Golusin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Rhode Island 1969.Google Scholar
  9. 9.
    P. Henrici, Applied and Computational Complex Analysis, vol.3, John Wiley and Sons, New York 1986.MATHGoogle Scholar
  10. 10.
    L. N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Stat. Comput. 1 (1980), 82–102.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    A. P. J. van Deursen, Schwarz-Christoffel analysis of cable conduits with noncontacting cover, IEEE Electronic Letters, 37 no.13 (2001), 816–817.CrossRefGoogle Scholar
  12. 12.
    A. P. J. van Deursen and S. Kapora, Reduction of common mode coupling of printed circuits boards by nearby U-shaped metal panel, to appear in IEEE Trans. on Electromagnetic Compatibility.Google Scholar

Copyright information

© Heldermann  Verlag 2006

Authors and Affiliations

  • Thomas K. DeLillo
    • 1
  • Tobin A. Driscoll
    • 1
  • Alan R. Elcrat
    • 2
  • John A. Pfaltzgraff
    • 3
  1. 1.Department of Mathematics and StatisticsWichita State UniversityWichitaUSA
  2. 2.Department of MathematicsUniversity of North CarolinaChapel HillUSA
  3. 3.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations