Skip to main content
Log in

Henry Granjon Prize Competition 2012 Winner Category B: “Materials Behaviour and Weldability” Influence of the [creq+Nieq] Alloy Level on the Transition Between Solidification Modes in Austenitic Stainless Steel Weld Metal

  • Peer-Reviewed Section
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

It is well known that primary austenitic solidification modes [A, AF] are related to hot cracking susceptibility in the welding of austenitic stainless steels; therefore the transition between primary austenitic solidification mode [AF] and primary ferritic solidification mode [FA] is of utmost importance and traditionally has been related to a critical Creq /Nieq ratio. This paper presents the experimental results obtained when analysing the effect of alloy level on the transition between solidification modes in austenitic stainless steel weld metals. With this aim, two series of compositions of austenitic stainless steel samples were prepared using an electric arc remelting furnace, keeping the overall alloying composition at two constant levels of [Creq+Nieq] = 30 wt% and [Creq+Nieq] = 40 wt% while changing the Creq/Nieq ratio from 1.22 up to 2.00 in each series. The experimental results show that for an alloy level of [Creq+Nieq] = 30 wt%, the critical Creq/Nieq ratio for the [AF]/[FA] transition takes place between 1.38 and 1.55, while in case of [Creq+Nieq] = 40 wt% the critical Creq/Nieq ratio takes place between 1.28 and 1.32, which is lower in value and narrower in range than the values obtained for the lower alloyed series. A comparison between these experimental results and other authors’ previous research is presented. Results reveal the importance of the alloy level [Creq+Nieq ] as a key parameter in the transition between solidification modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kujanpää V.P., David S.A., White C.L.: Formation of hot cracks in austenitic stainless steel welds- solidification cracking, Welding Journal, 1986, vol. 65, num. 8, p. 203s–212s.

    Google Scholar 

  2. Suutala N., Takalo T. and Moisio T.: The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds, Metallurgical Transactions A, 1979, vol. 10A, num. 4, p. 512–514.

    Article  CAS  Google Scholar 

  3. Kujanpää V.P., Suutala N., Takalo T. and Moisio T.: Correlation between solidification cracking and microstructure in austenitic and austenitic-ferritic stainless steel welds, Welding Research International, 1979, vol. 9, num. 2, p. 55–75.

    Google Scholar 

  4. Lippold J.C. and Savage W.F.: Solidification of austen-iticstainless steel weldments: part III — The effect of solidification behavior on hot cracking susceptibility, Welding Journal, 1982, num. 12, p. 388s-396s.

  5. Brooks J.A., Thomson A.W. and Williams J.C.: Variations in weld ferrite content due to P and S. Welding Journal, 1983, num. 8, p. 220s-225s.

  6. Kujanpää V.P, Suutala N.J., Takalo T.K. and Moisio T.J.I.: Solidification cracking — estimation of the susceptibility of austenitic and austenitic-ferritic stainless steel welds, Metal Construction, 1980, vol. 12, num. 6, p. 282–285.

    Google Scholar 

  7. Suutala N., Takalo T. and Moisio T.: Technical note: Comment on the transformation η → γ by a massive mechanism in austenitic stainless steel, Welding Journal, 1981, num. 5, p. 92s-93s.

  8. Suutala N.: Effect of solidification conditions on the solidification mode in austenitic stainless steels, Metallurgical Transactions A, 1983, vol 14A, num. 2, p. 191–197.

    Article  Google Scholar 

  9. Kujanpää V.P.: Effects of steel type and impurities in solidification cracking of austenitic stainless steel welds, Metal Construction, 1985, vol. 17, num. 1, p. 40R–46R.

    Google Scholar 

  10. Brooks J.A.: Solidification behavior and cracking susceptibility of austenitic stainless steel welds, Proceedings of the 8th Annual North American Welding Research Conference, Columbus, 19–21 October 1992. Ohio, 1992, 14 pages.

    Google Scholar 

  11. Li L. and Messler R.W.Jr.: The effects of phosphorus and sulphur on susceptibility to weld hot cracking in austenitic stainless steels, Welding Journal, 1999, num. 12, p. 387s-396s.

  12. Brooks J.A., Robino C.V., Headley T.J. and MICHAEL J.R.: Weld solidification and cracking behavior of free-machining stainless steel, Welding Journal, 2003, num. 3, p. 51s-64s.

  13. Brooks J.A., Goods S.H., Robino C.V.: Weld properties of AISI 303 free-machining stainless steel, Welding Journal, 2003, num. 4, p. 84s-92s.

  14. Shankar V., Gill T.P.S., Mannan S.L. and Sundaresan S.: Solidification cracking in austenitic stainless steel welds, Sadhana, 2003, vol. 28, p. 359–382.

    Article  CAS  Google Scholar 

  15. Katayama S., Fujimoto T. and Matsunawa A.: Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals, Transactions of Japanese Welding Research Institute, 1985, vol. 14, num. 1, p. 123–138.

    CAS  Google Scholar 

  16. Lundin C.D., Delong W.T. and Spond D.F.: Ferritefissuring relationship in austenitic stainless steel weld metals. Welding Journal, 1975, num. 8, p. 241s-246s.

  17. Lundin C.D., Delong W.T. and Spond D.F.: The fissure bend test, Welding Journal, 1976, n. 6, p. 145s-151s.

  18. Schaeffler A.L.: Constitution diagram for stainless steel weld metal, Metal Progress, 1949, vol. 56, n. 11, p. 680–680B.

    CAS  Google Scholar 

  19. Hammar Ö. and Svensson U.: Influence of steel composition on segregation and microstructure during solidification of austenitic stainless steels. The Metals Society. International Conference on Solidification and Casting of Metals. Sheffield (UK): 1979, p. 401-410.

  20. Long C.J. and Delong W.T.: The ferrite content of austenitic stainless steel weld metal. Welding Journal. 1973, vol. 52, n.7, p.281s–297s.

    Google Scholar 

  21. Elmer J.W., Allen S.M. and Eagar T.W.: Microstructural development during solidification of stainless steel alloys. Metallurgical Transactions A. 1989, vol. 20A, p. 2117–2131.

    Article  CAS  Google Scholar 

  22. Inoue H., Koseki T. and Ohkita S.: Effect of solidification and subsequent transformation on ferrite morphologies in austenitic stainless steel welds. International Institute of Welding, 1996. Doc. IX-1835. 24 pages. Abstract in English of 5 technical papers published at Quarterly Journal of the Japan Welding Society. 1997, vol. 15, num. 1, p. 77–87, 88-99, num. 2, p. 281-291, 292-304, 305-313.

    Article  CAS  Google Scholar 

  23. Inoue H. and Koseki T.: Clarification of solidification behaviors in austenitic stainless steels based on welding process. Nippon Steel Technical Report. 2007, num. 95, p. 62-70.

  24. Inoue H., Koseki T, Ohkita S. and Fuji M.: Formation mechanism of vermicular and lacy ferrite in austenitic stainless steel weld metals. Science and Technology of Welding and Joining. 2000, vol. 5, num. 6, p. 385–396.

    Article  CAS  Google Scholar 

  25. Elmer J.W., Allen S.M., Eagar T.W.: The influence of cooling rate on the ferrite content of stainless steel alloys. Proceedings of the 2nd International Conference on Trends in Welding Research, Gatlinburg, 14–18 May 1989. Tennessee: ASM International, 1989, p. 165–170.

  26. Lippold J.C.: Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels. Welding Journal. 1994, num. 6, p. 129s-139s.

  27. Stelling K., Michael T., Schobbert H.: Solidification behaviour and weldability of austenitic steels in laser and hybrid welding. Welding and cutting. 2007, vol. 6, num. 3, p. 171–175.

    Google Scholar 

  28. Anderson T.D., Perricone M.J., DuPont J.N. and MARDER A.R.: The influence of molybdenum on stainless steel weld microstructures. Welding Journal. 2007, vol. 86, num. 9, p. 281s–292s.

    Google Scholar 

  29. Fukumoto S. and Kurz W.: Solidification phase and microstructure selection maps for Fe-Cr-Ni alloys. ISIJ International. 1999, vol. 39, num. 12, p. 1270–1279

    Article  CAS  Google Scholar 

  30. Fukumoto S. and Kurz W.: Prediction of the δ to γ transition in austenitic stainless steels during laser treatment. ISIJ International. 1998, vol. 38, num. 1, p. 71–77.

    Article  CAS  Google Scholar 

  31. Katayama S. and Matsunawa A.: Solidification microstructure of laser welded stainless steels. Proceedings International Congress on Applications of Lasers & Electro-Optics (ICALEO). Laser Institute of America. 1984, vol. 44, p. 60–67.

    CAS  Google Scholar 

  32. Iamboliev T., Katayama S. and Matsunawa A.: Interpretation of phase formation in austentic stainless steel welds. Welding Journal. 2003, num. 12, p. 337s-347s.

  33. Elmer J.W., Eagar T.W. and Allen S.M.: Modeling second-phase formation during rapid resolidification of stainless steel alloys, Conference on Stainless Steels, June 10–13, Chiba. Japan, 1991, 8 p.

  34. Elmer J.W., Eagar T.W. and Allen S.M.: Single-phase solidification during rapid-resolidification of stainless steel alloys. Proceedings of the Materials Weldability Symposium. Ohio: ASM International, 1990, p. 143–150.

  35. Kotecki D.J. and Siewert T.A. WRC-1992: Constitution Diagram for stainless steel weld metals: a modification of the WRC-1988 Diagram, Welding Journal, 1992, num. 5, p. 171s-178s.

  36. Valiente Bermejo M.A.: A mathematical model to predict δ-ferrite content in austenitic stainless steel weld metals, Welding in the World, 2012, vol. 56, issue 09/10, p. 48–68.

    Article  Google Scholar 

  37. ASTM E1306-94 (Reapproved 2004) Standard Practice for Preparation of Metal and Alloy Samples by Electric Arc Remelting for the Determination of Chemical Composition, Philadelphia: ASTM International, 2004.

  38. Valiente Bermejo M.A.: Modelization of δ-ferrite content (FN) in austenitic stainless steels under electric arc conditions, PhD, University of Barcelona. Department of Materials Science and Metallurgical Engineering, June 2010.ISBN 978-84-693-5713-2.

  39. ASTM E1306-07 Standard Practice for Preparation of Metal and Alloy Samples by Electric Arc Remelting for the Determination of Chemical Composition. Philadelphia: ASTM International, 2007.

  40. Lippold J.C. and Kotecki D.J.: Welding Metallurgy and Weldability of Stainless Steels, New Jersey: Wiley-Interscience, 2005. ISBN 0-471-47379-0.

    Google Scholar 

  41. Rajasekhar K., Harendranath C.S., Raman R. and Kulkarni S.D.: Microstructural evolution during solidification of austenitic stainless steel weld metals: a color metallographic and electron microprobe analysis study, Materials Characterization, 1997, vol. 38, num. 2, p. 53–65.

    Article  CAS  Google Scholar 

  42. Tosten M.H. and Morgan M.J.: Microstructural study of fusion welds in 304L and 21Cr-6Ni-9Mn stainless steels, Westinghouse Savannah River Company, 2005, ref. TR-2004-00456, 27 pages.

  43. Smith J.J. and Farrar R.A.: Influence of microstructure and composition on mechanical properties of some AISI 300 series weld metals, International Materials Reviews, 1993, vol. 38, num. 1, p. 25–50.

    Article  CAS  Google Scholar 

  44. Oseki T., Matsumiya T., Yamada W. and Ogawa T.: Numerical modeling of solidification and subsequent transformation of Fe-Cr-Ni alloys, Metallurgical and Materials Transactions A, 1994, vol. 25A, p. 1309–1321.

    Google Scholar 

  45. Kundrat D.M. and Elliot J.F.: Phase relationships in the Fe-Cr-Ni system at solidification temperatures, Metallurgical Transactions A., 1988, vol. 19A, p. 899–908.

    Article  CAS  Google Scholar 

  46. Folkhard E.: Welding Metallurgy of Stainless Steels. Vienna: Springer-Verlag, 1988. ISBN 3-211-82043-4.

    Book  Google Scholar 

  47. Ogawa T. and Koseki T.: Weldability of newly developed austenitic alloys for cryogenic service: Part II- High-nitrogen stainless steel weld metal, Welding Journal, 1988, vol. 67, num. 1, p. 8s–17s.

    Google Scholar 

  48. Koseki T., Inoue H., Morimoto H. and Ohkita S.: Prediction of solidification and phase transformation of stainless steel weld metals, Nippon Steel Technical Report, 1995, num. 65, p. 33-40.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Asunción Valiente Bermejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiente Bermejo, M.A. Henry Granjon Prize Competition 2012 Winner Category B: “Materials Behaviour and Weldability” Influence of the [creq+Nieq] Alloy Level on the Transition Between Solidification Modes in Austenitic Stainless Steel Weld Metal. Weld World 56, 2–14 (2012). https://doi.org/10.1007/BF03321390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321390

IIW- Thesaurus keywords

Navigation