Welding in the World

, Volume 56, Issue 7–8, pp 82–96 | Cite as

Overview of Fatigue Data for High Frequency Mechanical Impact Treated Welded Joints

  • Halid Can YildirimEmail author
  • Gary B. Marquis
Peer-Reviewed Section


paper provides an overview of published experimental data on the fatigue strength of welded joints by high frequency mechanical impact (HFMI) treatment methods, In total, 414 data points from four specimen types are available,tests were performed using constant amplitude R = 0.1 axial tension fatigue, but some data for other R rations, variable amplitude testing and bending fatigue are also reported. An S-N slope of m = 5 gives a very good description of both individual data sets and of the composite data Design curve recommendations for the four joint types and for the structural stress-based design curve are given. HFMI treated specimens generally follow the same trend as experimental data for hammer peened specimens, but the degree of improvement is better. Data for large structures, at stress ratios other than R=0.1 and for variable amplitude loading are still needed in order to update the IIW guideline for post-weld improvement. There is a general trend for increasing fatigue strength improvement as a function of steel yield strength but this influence needs further study in order to develop guidelines. Quality assurance measures for HFMI treatment methods must also be defined.

IIW-Thesaurus keywords

Fatigue improvement High strength steels Impact toughness Weld toes 



Statistical intercept


Statistical slope


Estimate of the intercept


Estimate of the slope


Fatigue capacity of specimen i


Computed mean fatigue capacity of test series


Characteristic fatigue capacity of the test serjes


Yield strength


Ultimate tensile strength


Characteristic fatigue class in MPa at 2 × 106 cycles to failure Characteristic fatigue class in MPa based on 97.7 % survival


probability at 2 × 106 cycles to failure at 75 % level of confidence


Number of test specimens in a data set


Stress ratio correction factor


Structural hot-spot stress concentration factor


Slope of the S-N curve


Number of fatigue cycles


Cycles to failure


The number of cycles to failure of specimen i


Probability of failure


Stress ratio


Stress range of specimen i


Equivalent constant amplitude stress range


Nominal stress amplitude at 5 % failure probabilities


Nominal stress amplitude at 95 % failure probabilities


Scatter range in stress


Student distribution


log Ni


log ΔSi

\( \bar X \)

Average of log Ni

\( \bar Y \)

Average of log ASi


Estimate of log ASi


Standard deviation

\( \hat \sigma _{\rm N} \)

Estimate of the normal distribution variance


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Haagensen P.J. and Maddox S.J.: IIW Recommendations on post-weld fatigue life improvement of steel and aluminium structures, IIW Doc. XIII-2200r7-10, 2010.Google Scholar
  2. [2]
    Haagensen, P.: IIW’s round robin and design recommendations for improvement methods, in Proceedings of the IIW International Conference on Performance of Dynamically loaded welded structures., S.J. Maddox and M. Prager (eds), July 14–15, 1997, San Francisco, Welding Research Council, New York.Google Scholar
  3. [3]
    Hobbacher A.: IIW Recommendations for fatigue design of welded joints and components, Doc. IIW-1823, WRC Bulletin 520, The Welding Research Council, New York, 2009.Google Scholar
  4. [4]
    Maddox, S.J.: 2003 IIW Portevin lecture: Key developments in the fatigue design of welded constructions, Proceedings of the IIW International Conference, 10 July 2003, Welding in the World, 2003, vol 47, Special Issue, pp. 7–40.Google Scholar
  5. [5]
    Bignonnet A.: Improving the fatigue strength of welded steel structures, Steel in Marine Structures, Developments in Marine Technology, Proc. 3rd Intl ECSC Offshore Conference, C. Noordhoek, J. de Back (eds.), Elsevier Science Publishers, Delft, 15–18 June, 1987, pp. 99–118.Google Scholar
  6. [6]
    Ohta A., Watanabe O., Matsuoka K., Maeda Y., Suzuki N., Kubo T.: Fatigue strength improvement of box welds by low transformation temperature welding wire and PWHT., Doc. IIW-1480, Welding in the World, 2000, vol. 44, no. 3, pp. 52–56.Google Scholar
  7. [7]
    Barsoum Z. and Gustafsson M.: Fatigue of high strength steel joints welded with low temperature transformation consumables, Engineering Failure Analysis, 2009, vol. 16, no. 7, pp. 2186–2194.CrossRefGoogle Scholar
  8. [8]
    Statnikov E., Trufyakov V.I., Mikheev P.P., Kudryavtsev Yu.F.: Specification for weld toe improvement by ultrasonic impact treatment, Doc. IIW-1346, Welding in the World, 2000, vol. 44, no. 1, pp. 5–7.Google Scholar
  9. [9]
    Applied Ultrasonics, In:
  10. [10]
    Integrity Testing Laboratory Inc, In:
  11. [11]
    Lets Global, In:
  12. [12]
    Zhao X., Wang D. and Huo L.: Analysis of the S-N curves of welded joints enhanced by ultrasonic peening treatment., Materials and Design, 2011, vol. 32, no. 1, pp. 88–96.CrossRefGoogle Scholar
  13. [13]
  14. [14]
  15. [15]
  16. [16]
    Bousseau M. and Millot T.: Fatigue life improvement of welded structures by ultrasonic needle peening compared to TIG dressing, IIW Doc. XIII-2125-06, 2006.Google Scholar
  17. [17]
    Haagensen P.J. and Alnes Ø.: Progress report on IIW WG2 round robin fatigue testing program on 700 MPa and 350 MPa YS Steels, IIW Doc. XII I-2081-05, 2005.Google Scholar
  18. [18]
    Weich, I.: Ermüdungsverhalten mechanisch nachbehandelter Schweißverbindungen in Abhängigkeit des Randschichtzustands, Fatigue behaviour of mechanical post weld treated welds depending on the edge layer condition, Technischen Universität Carolo-Wilhelmina, Doctorate Thesis, 2008 (in German).Google Scholar
  19. [19]
    Huo L., Wang D. and Zhang Y.: Investigation of the fatigue behaviour of the welded joints treated by TIG dressing and ultrasonic peening under variable-amplitude load. International Journal of Fatigue, 2005, vol. 27, no. 1, pp. 95–101.CrossRefGoogle Scholar
  20. [20]
    Martinez L., Blom A.F., Trogen H. and Dahle T.: Fatigue behavior of steels with strength levels between 350 MPa and 900 MPa influence of post weld treatment under spectrum loading, In Blom A., ed.: Proceedings of the North European Engineering and Science Conference (NESCO): Welded High-Strength Steel Structure, Stockholm, 1997.Google Scholar
  21. [21]
    Wang T., Wang D., Huo L. and Zhang Y.: Discussion on fatigue design of welded joints enhanced by ultrasonic peening treatment (UPT), International Journal of Fatigue, 2009, vol. 31, no. 4, pp. 644–650.CrossRefGoogle Scholar
  22. [22]
    Lihavainen V.M., Marquis G., Statnikov E.S.: Fatigue strength of a longitudinal attachment improved by ultrasonic impact treatment, Doc. IIW-1631, Welding in the World, 2004, vol. 48, no. 5/6, pp. 67–73.CrossRefGoogle Scholar
  23. [23]
    Maddox S.J., Dore M.J. and Smith S.D.: A case study of the use of ultrasonic peening for upgrading a welded steel structure, Doc. IIW-2203, Welding in the World, 2011, vol. 55, no. 9/10, pp. 56–67.Google Scholar
  24. [24]
    Marquis G. and Björk T.: Variable amplitude fatigue strength of improved HSS welds, IIW Doc. XIII-2224-08, 2008.Google Scholar
  25. [25]
    Mori T., Shimanuki H. and Tanaka M.: Effect of UIT on fatigue strength of web-gusset welded joints considering service condition of steel structures, Doc. IIW-2318, to be published in Welding in the World, 2012, vol. 56, no. 9/10.Google Scholar
  26. [26]
    Leitner M., Stoschka M., Schörghuber M. and Eichlseder W.: Fatigue behaviour of high-strength steels using an optimized welding process and high frequency peening technology, Proceedings of the IIW International Conference, Chennai, 21–22 July, 2011, IC38.Google Scholar
  27. [27]
    SSAB: Domex 420 MC D Hot rolled, high strength, cold forming steel, DATASHEET: 11-02-03 GB8415 DOMEX.Google Scholar
  28. [28]
    SSAB: Domex 700 MC Hot rolled, extra high strength, cold forming steel, DATA SHEET: 11-02-03 GB8421 DOMEX.Google Scholar
  29. [29]
    SSAB: Domex 960 Structural strip steel sheet, DATA SHEET: 11-02-16 GB8435 DOMEX.Google Scholar
  30. [30]
    Trufiakov V.I., Statnikov E.S., Mikheev P.P. and Kuzmenko A.Z.: The efficiency of ultrasonic impact treatment for improving the fatigue strength, IIW Doc. XIII-1745-98,1998.Google Scholar
  31. [31]
    Pedersen M., Mouritsen O.Ø., Hansen M.R., Andersen J.G. and Wenderby J.: Comparison of post-weld treatment of high-strength steel welded joints in medium cycle fatigue, Doc. IIW-2077, Welding in the World, 2010, vol. 54, no. 7/8, pp. R208–R217.CrossRefGoogle Scholar
  32. [32]
    Galtier A. and Statnikov E.: The influence of ultrasonic impact treatment on fatigue behaviour of welded joints in high-strength steel, IIW Doc. XIII-1976-03, 2003.Google Scholar
  33. [33]
    Statnikov E.S., Muktepavel V.O. and Blomqvist A.: Comparison of ultrasonic impact treatment (UIT) and other fatigue life improvement methods, doc. IIW-1506, Welding in the World, 2002, vol. 46, no. 3/4, pp. 20–32.CrossRefGoogle Scholar
  34. [34]
    Kuhlmann U., Dürr A., Bergmann J. and Thumser R.: Effizienter Stahlbau aus höherfesten Stählen unter Ermüdungsbeanspruchung, Fatigue strength improvement forweldedhighstrengthsteelconnectionsduetotheapplication of post-weld treatment methods, Forschungsvorhaben P620 FOSTA, Verlag und Vertriebsgesellschaft GmbH, Düsseldorf, 2006 (in German).Google Scholar
  35. [35]
    Kudryavtsev Y., Kleiman J., Lugovskoy A., Lobanov L., Knysh V., Voitenko O. and Propenko G.: Rehabilitation and repair of welded elements and structures by ultrasonic peening, Doc. IIW-1806, Welding in the World, 2007, vol. 51, no. 7/8, pp. 47–53.CrossRefGoogle Scholar
  36. [36]
    Kuhlmann U. and Gunther H.: Experimentelle Untersuchungen zur ermüdungssteigernden Wirkung des PIT-Verfahrens, Experimental investigations of the fatigue-enhancing effect of the PIT process, Versuchsbericht, Universität Stuttgart, Institut für Konstruktion und Entwurf, September 2009 (in German).Google Scholar
  37. [37]
    Okawa T., Shimanuki H., Funatsu Y., Nose T. and Sumi Y.: Effect of preload and stress ratio on fatigue strength of welded joints improved by ultrasonic impact treatment., IIW Doc. XII I-2377-11,2011.Google Scholar
  38. [38]
    Janosch J.J., Koneczny H., Debiez S., Statnikov E.C., Troufiakov V.J. and Mikhee RR: Improvement of fatigue strength in welded joints (in HSS and in aluminium alloys) by ultrasonic hammer peening, Doc. IIW-1300, Welding in the World, 1996, vol. 37, no. 2, pp. 72–82.Google Scholar
  39. [39]
    Fricke, W.: IIW Recommendations for the fatigue assessment by notch stress analysis for welded structures, IIW Doc. XIII-2240r3-10, 2010.Google Scholar
  40. [40]
    ASTM E739-10: Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life and Strain-Life Fatigue Data, 2010.Google Scholar
  41. [41]
    Marquis G.: Failure modes and fatigue strength of improved HSS welds, Engineering Fracture Mechanics, 2010, vol. 77, no.11, pp. 2051–2062.CrossRefGoogle Scholar
  42. [42]
    Maddox S.J.: Progress report on IIW Working Group 2 round robin fatigue testing programme, IIW Doc. XIII-WG2-104-04, 2004.Google Scholar
  43. [43]
    Gurney T.: Effect of peening and grinding on the fatigue strength of fillet welded joints, British Welding Journal, December 1968, pp. 601-609.Google Scholar
  44. [44]
    Branco, C., Infante, V. and Baptista, R.: Fatigue behaviour of welded joints with cracks, repaired by hammer peening, Fatigue & Fracture of Engineering Materials & Structures, 2004, vol. 27, no. 9, pp. 785–798.CrossRefGoogle Scholar
  45. [45]
    Manteghi S. and Maddox S.J.: Methods for fatigue life improvement of welded joints in medium and high strength steels, IIW Doc. XIII-2006-04, 2004.Google Scholar
  46. [46]
    Booth G.: Techniques for improving the fatigue strength of plate welded joints, Steel in Marine Structures, SIMS-87, Paper TS 41, 1987, pp. 747-757.Google Scholar

Copyright information

© International Institute of Welding 2012

Authors and Affiliations

  1. 1.Department of Applied MechanicsAalto UniversityAaltoFinland

Personalised recommendations