Welding in the World

, Volume 56, Issue 1–2, pp 54–61 | Cite as

Visualization and Optimization of Shielding Gas Flows in Arc Welding

  • Michael Schnick
  • Michael Dreher
  • Jörg Zschetzsche
  • Uwe Füssel
  • Andreas Spille-Kohoff
Peer-Reviewed Section


GMA welding is one of the most frequently applied welding techniques in industry. Particularly the joining of aluminium, high alloyed steels or titanium requires a cover of shielding gas in order to provide a low PPM concentration of oxygen. The result of the welding process depends essentially on the chemical and thermophysical properties of the process gas used. Consequently, it is necessary to be able to describe and to analyse its flow with respect to various influencing variables. However, it is very difficult to realize this during arc welding processes; a poor access is predominant due to the covered areas inside the welding torch and temperatures of up to 20 000 K cause the strong radiation of the arc and electromagnetic fields. This paper deals with experimental and numerical methods for visualization and quantification of process gas flows in arc welding and gives examples for their technical applications. Unlike previous work, the described methods consider the arc as a dynamic element which determinates the gas flow. Advanced Particle Image Velocimetry (PIV) and Schlieren measurement were used for characterization of the flow field in the direct vicinity of the arc in GTA and GMA welding. Furthermore, a numerical model including magneto-hydrodynamics and turbulence models was used for a detailed visualization of the flow in the free jet and in the hidden interior of the torch. It is based on a commercial CFD code which allows to model complex 3-D geometries of torch and workpiece design. Mixing effects and turbulence model were validated by oxygen measurements in the gas shield.

IIW-Thesaurus keywords

Arc Physics Arc Welding Electric arcs Flow GMA welding GMMA welding GTA welding Impurities MAG welding Measurement Measuring instruments MIG welding Outdoor environment Oxides Oxygen Photography Research and development Shielding gases Simulating Torches 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cooper P., Godbole A. and Norrish J.: Modelling and simulation of gas flows in arc welding — Implications for shielding efficiency and fume extraction, IIW Doc. XII-1932-07, 2007.Google Scholar
  2. [2]
    Speiseder M. and Lang A.: Optimierung des MIG-Schweißprozesses mit Hilfe der numerischen Simulation und PIV-Messung, Optimization of MIG-welding by numerical simulation and PIV, Dresdner Fügetechnisches Kolloquium, Technische Universität Dresden, 2006 (in German).Google Scholar
  3. [3]
    Lowke J.J. and Tanaka M.: ‘LTE-diffusion approximation’ for arc calculations, Journal of Physics D: Applied Physics, 2006, vol. 39, no. 16, pp. 3634–3643.CrossRefGoogle Scholar
  4. [4]
    Lowke J.J., Morrow R. and Haidar, J.: A simplified unified theory of arcs and their electrodes. Journal of Physics D: Applied Physics, 1997, vol. 30, no. 14, pp. 2033–2042.CrossRefGoogle Scholar
  5. [5]
    Zschetzsche J.: Diagnostik von Schutzgasschweißprozessen, Diagnostic of GMAW-processes, Dissertation Technische Universität Dresden, Verlag der Wissenschaften, Dresden, 2007 (in German).Google Scholar
  6. [6]
    Zosel J., Guth U., Doerner K. and Zschetzsche J.: Strömungsmessung an Lichtbögen und Plasmen zur Materialbearbeitung mit LDA und PIV, Flow measurements in arcs and machining plasmas by LDA and PIV, In D. Dopheide: Lasermethoden in der Strömungsmesstechnik, ISBN 3-00-011903-5, Braunschweig, 2007 (in German).Google Scholar
  7. [7]
    Schnick M., Füssel U., Zschetzsche J., Guth U. and Zosel J.: Measurement and simulation of plasma and shielding gas flows in welding arcs, 58th IIW Annual Assembly and International Conference of the International Institute of Welding, Prague, Welding in the World, 2005, vol. 49, Special Issue, p. 413.Google Scholar
  8. [8]
    Settles G.S.: Schlieren & Shadowgraph Techniques, Springer Verlag, 2006.Google Scholar
  9. [9]
    Haessler M., Füssel U., Siewert E. and Schnick M.: Visualisierung von Strömungen am Lichtbogen durch Schlierenmesstechnik, Visualization of gas flows in the arc region by Schlieren technique, Technische Universität Dresden, Dresden, 2009 (in German).Google Scholar
  10. [10]
    Möller F.: Visualization of gas flows for research and industry use, In: BIAS Bulletin, 2009, vol. 01, no. 2.Google Scholar
  11. [11]
    Lin M.L. and Eagar T. W.: Pressures produced by gas tungsten arcs, Metallurgical Transactions B, September 1986, vol. 17, pp. 601–607.CrossRefGoogle Scholar
  12. [12]
    Spille-Kohof A.: Lichtbogenprozesssimulation mit ANSYS CFX, Numerical simulation of arc welding processes, Dresdner Fügetechnisches Kolloquium, Selbstverlag der Technischen Universität Dresden, Dresden, 2009, ISBN 978-3-86780-115-7 (in German).Google Scholar
  13. [13]
    Schnick M., Füssel U. and Spille-Kohoff A.: Numerical investigations of the influence of design parameters, gas composition and electric current in Plasma Arc Welding (PAW), Doc. IIW-1197, Welding in the World, 2010, vol. 54, no. 3/4, pp. R87–R96.CrossRefGoogle Scholar
  14. [14]
    Schnick M., Füssel U., Hässler M., Hertel M., Spille-Kohoff A.: Effects of metal vapor in GMA welding —Numerical investigations in diffusion effects of metal vapor and its influences on arc behavior, Proceedings of 8th international Symposium of the Japanese Welding Society and IIW Intermediate Meeting, Kyoto, 2009.Google Scholar
  15. [15]
    Spille-Kohoff A.: Implementierung von Entmischung in ANSYS CFX, Implementation of demixing, CFX Berlin Software GmbH, Berlin, 2007 (in German).Google Scholar
  16. [16]
    Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications, AIAA-Journal, 1994, vol. 32, no. 8, pp. 1598–1605.CrossRefGoogle Scholar
  17. [17]
    Murphy A.B.: Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas, Plasma Chemistry and Plasma Processing, 1995, vol. 15, no. 2, pp. 279–307.CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2012

Authors and Affiliations

  • Michael Schnick
    • 1
  • Michael Dreher
    • 1
  • Jörg Zschetzsche
    • 1
  • Uwe Füssel
    • 1
  • Andreas Spille-Kohoff
    • 2
  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.CFX Berlin Software GmbHBerlinGermany

Personalised recommendations