Skip to main content
Log in

Numerical Calculation of Conformal Mapping to a Disk Minus Finitely Many Horocycles

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

The Riemann mapping to the complement in a disk of a finite union of disjoint disks bounded by horocycles has a Schwarzian derivative in the form of a simple rational function R = R[{z k}, {r k}](z) with two accessory parameters z k, r k for each vertex ωk. It is shown that if the prevertices z k are presupposed (while the ωk are undetermined), there exists a unique set of values {r k} for which R is the Schwarzian derivative of such a horocyclic mapping. These values depend on the combinatorial structure of the adjacencies of horocycles. An algorithm is developed for calculating the correspondence, and numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973..

    MATH  Google Scholar 

  2. R. W. Barnard, K. Pearce and G. B. Williams, Three extremal problems for hyperbolically convex functions, Comput. Methods Funct. Theory 4 (2004), 97–109.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bjørstad and E. Eric Grosse, Conformal mapping of circular arc polygons, SIAM J. Sci. Statist. Comput. 8 (1987), 19–32.

    Article  MathSciNet  Google Scholar 

  4. P. Brown, Mapping onto circular arc polygons, Complex Var. Theory Appl. 50 (2005), 131–154.

    MathSciNet  MATH  Google Scholar 

  5. M. Chuaqui and Ch. Pommerenke, An integral representation formula of the Schwarzian derivative, Comput. Methods Funct. Theory 1 (2001), 155–163.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel Mapping, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge 2002.

    Book  MATH  Google Scholar 

  7. U. Faigle, W. Kern and G. Still, Algorithmic Principles of Mathematical Programming, Kluwer Texts in the Mathematical Sciences 24, Kluwer Academic Publishers, Dordrecht, 2002.

    MATH  Google Scholar 

  8. L. R. Ford, Automorphic Functions, Chelsea Publishing Company, New York, 2nd. edition, 1951.

    Google Scholar 

  9. R. Fricke and F. Klein, Vorlesungen über die Theorie der Modulfunktionen, 2 vols, B. G. Teubner, Leipzig, 1890–1892, Bibliotheca Mathematica Teubneriana, Band 10, 11, Johnson Reprint Corp., New York; Verlagsgesellschaft, Stuttgart, 1966.

    Google Scholar 

  10. P. Henrici, Applied and Computational Complex Analysis, Vol. 3, Wiley, New York, 1986.

    MATH  Google Scholar 

  11. E. Hille, Analytic Function Theory, Vol. 2, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962.

    MATH  Google Scholar 

  12. L. H. Howell, Numerical conformal mapping of circular arc polygons, J. Comput. Appl. Math. 46 (1993), 7–28.

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, 2nd. edition, Die Grundlehren der mathematischen Wissenschaften 126, Springer-Verlag, New York-Heidelberg, 1973.

    Book  MATH  Google Scholar 

  14. W. Ma, D. Minda and D. Mejia, Hyperbolically 1-convex functions, Ann. Polon. Math. 84 (2004), 185–202.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Magnus, Noneuclidean Tesselations and Their Groups, Pure and Applied Mathematics 61, Academic Press, New York-London, 1974.

    MATH  Google Scholar 

  16. A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. 3, 2nd. English edition, Chelsea Publishing Co., New York, 1977.

    MATH  Google Scholar 

  17. B. Maskit, On the classification of function groups, Discrete Groups and Automorphic Functions (Proc. Conf., Cambridge, 1975), Academic Press, London (1977), 349–361.

    Google Scholar 

  18. B. Maskit, Kleinian Groups, Grundlehren der Mathematischen Wissenschaften 287, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  19. D. Mejía and Ch. Pommerenke, Hyperbolically convex functions, Analysis and Applications — ISAAC 2001 (Berlin), Int. Soc. Anal. Appl. Comput. 10, Kluwer Acad. Publ., Dordrecht (2003), 89–95.

    Google Scholar 

  20. —, Horocyclically convex univalent functions, to appear.

  21. Z. Nehari, Conformal Mapping, McGraw-Hill Book Co., New York-Toronto-London, 1952.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Porter.

Additional information

Support received from CONACyT grant 46936.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, R.M. Numerical Calculation of Conformal Mapping to a Disk Minus Finitely Many Horocycles. Comput. Methods Funct. Theory 5, 471–488 (2006). https://doi.org/10.1007/BF03321111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321111

Keywords

2000 MSC

Navigation