Skip to main content
Log in

Bloch-Sobolev Spaces and Analytic Composition Operators

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We introduce the so-called Bloch-Sobolev function spaces and show that these spaces have nice closure properties. We also characterize the boundedness and compactness of a composition operator Cø (with analytic symbol ø between two subdomains Ω, Ω′ ⊊ ℝ2) acting between two Bloch-Sobolev spaces. As a by-product we obtain a characterization of those analytic mappings ø: Ω→ Ω′, which are uniformly continuous with respect to the quasihyperbolic metrics in Ω and Ω′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Astala and F. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Michigan Math. J. 32 (1985) no.1, 99–107.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Anal. Math. 30 (1976), 172–199.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford 1993.

    MATH  Google Scholar 

  4. F. John, Functions whose gradients are bounded by the reciprocal distance from the boundary of their domain, Russian Math. Surveys 29 (1974), 170–175.

    Article  MATH  Google Scholar 

  5. P. Koskela, Normal solutions of elliptic equations, Math. Proc. Cambridge Philos. Soc. 119 (1996) no.2, 363–371.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Krantz, Complex Analysis: The Geometric Viewpoint, Mathematical Association of America, Washington D.C 1990

    MATH  Google Scholar 

  7. K. Kurdyka and J. Xiao, John functions, quadratic integral forms and ο- minimal structures, Illinois J. Math. 46 (2002) no.4, 1089–1109.

    MathSciNet  MATH  Google Scholar 

  8. V. Latvala, Bloch functions of solutions to quasilinear elliptic equations, Complex Analysis and Differential Equations (Uppsala, 1997), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist. 64 (1999), 215–224.

    MathSciNet  Google Scholar 

  9. V. Latvala, On subclasses of BMO(B) for solutions of quasilinear elliptic equations, Analysis 19 (1999), 103–116.

    MathSciNet  MATH  Google Scholar 

  10. V. Latvala, BMO-invariance of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 29 (2004) no.2, 407–418.

    MathSciNet  MATH  Google Scholar 

  11. O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane (2nd edn), Die Grundlehren der mathematischen Wissenschaften 126, Springer-Verlag, Berlin 1973.

    Book  MATH  Google Scholar 

  12. K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679–2687

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, 51, Amer. Math. Soc., Providence, RI 1997.

    MATH  Google Scholar 

  14. G. Martin, Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), 169–192.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. A. Nolder, Hardy-Littlewood theorems for solutions of elliptic equations in divergence form, Indiana Univ. Math. J. 40 (1991), 149–160.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. A. Nolder, Lipschitz classes of solutions to certain elliptic equations, Ann. Acad. Sci. Fenn. Math. 17 (1992), 211–219.

    MathSciNet  MATH  Google Scholar 

  17. C. A. Nolder, A quasiregular analogue of a theorem of Hardy and Littlewood, Trans. Amer. Math. Soc. 331 (1992), 215–226.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. G. Staples, Lp-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Math. 14 (1989), 103–127.

    MathSciNet  MATH  Google Scholar 

  19. J. Shi and Z. Zhou, Compactness of composition operators on the Bloch space in classical bounded symmetric domains, Michigan Math. J. 50 (2002) no.2, 381–405

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math. 1319, Springer-Verlag, Berlin 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Kotilainen.

Additional information

Jie Xiao was supported by NSERC (Canada).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotilainen, M., Latvala, V. & Xiao, J. Bloch-Sobolev Spaces and Analytic Composition Operators. Comput. Methods Funct. Theory 5, 381–393 (2006). https://doi.org/10.1007/BF03321105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321105

Keywords

2000 MSC

Navigation