Skip to main content
Log in

Remez-Type Inequalities in Terms of Linear Measure

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We obtain sharp uniform bounds for an exponential Q of a logarithmic potential on a quasi-smooth curve (in the sense of Lavrentiev) in terms of the linear measure of the subset of that curve on which Q is bounded by 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, N. J., Van Nostrand, 1966.

    MATH  Google Scholar 

  2. V. V. Andrievskii, A Constructive characterization of harmonic functions in domains with quasiconformal boundary, Math. USSR Izvestija 34 (1990), 441–454.

    Article  MathSciNet  Google Scholar 

  3. V. V. Andrievskii, A Remez-type inequality in terms of capacity, Complex Variables 45 (2001), 35–46.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. V. Andrievskii, V. I. Belyi and V. K. Dzjadyk, Conformal Invariants in Constructive Theory of Functions of Complex Variables, Atlanta, Georgia, World Federation Publisher, 1995.

    Google Scholar 

  5. V. V. Andrievskii and S. Ruscheweyh, Maximal polynomial subordination to univalent functions in the unit disk, Constr. Approx. 10 (1994), 131–144.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169.

    Article  MathSciNet  Google Scholar 

  7. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Berlin/New York, Springer-Verlag, 1995.

    Book  MATH  Google Scholar 

  8. T. Erdélyi, Remez-type inequalities on the size of generalized polynomials, J. London Math. Soc. 45 (1992), 255–264.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Erdélyi, Remez-type inequalities and their applications, J. Comput. Appl. Math. 47 (1993), 167–209.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Erdélyi, X. Li and E. B. Saff, Remez- and Nikolskii-type inequalities for logarithmic potentials, SIAM J. Math Anal. 25 (1994), 365–383.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Haliste, Estimates of harmonic measures, Ark. Math. 6 (1967), 1–31.

    Article  MathSciNet  Google Scholar 

  12. J. Hersch, Longueurs extrémales et théorie des fonctions, Comm. Math. Helv. 29 (1955), 301–337.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Lavrentiev, Boundary problems in the theory of univalent functions (in Russian), Mat. Sb. (N.S.) 1 (1936), 815–844; transl. in Amer. Math. Soc. Transl. Ser. 2, 2 (1963), 1–35.

    Google Scholar 

  14. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., N w York: Springer-Verlag, 1973.

    Book  MATH  Google Scholar 

  15. K. Löwner, Über Extremumsätze bei der konformen Abbildung des Äu\eren des Einheits-kreises, Math. Z. 3 (1919), 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Nevanlinna, Eindeutige analytische Funktionen, 2nd ed., Berlin/New York, Springer-Verlag, 1974.

    MATH  Google Scholar 

  17. Ch. Pommerenke, Univalent Functions, Göttingen, Vandenhoeck and Ruprecht, 1975.

    MATH  Google Scholar 

  18. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Berlin/New York, Springer-Verlag, 1992.

    Book  MATH  Google Scholar 

  19. E. J. Remez, Sur une propriété des polynômes de Tchebycheff, Comm. l’Inst. Sci., Kharkow 13 (1936), 93–95.

    Google Scholar 

  20. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, N w York/Berlin: Springer-Verlag, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Andrievskii.

Additional information

The work of V. Andrievskii was supported in part by the Alexander von Humboldt Foundation and was conducted while visiting the Würzburg University. The work of S. Ruscheweyh was partially supported by the German-Israeli Foundation (grant G-809-234.6/2003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrievskii, V.V., Ruscheweyh, S. Remez-Type Inequalities in Terms of Linear Measure. Comput. Methods Funct. Theory 5, 347–363 (2006). https://doi.org/10.1007/BF03321102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321102

Keywords

2000 MSC

Navigation