Skip to main content
Log in

On Sparse Sets with the Green Function of the Highest Smoothness

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let E be a regular compact subset of the real line, let be the Green function of the complement of E with respect to the extended complex plane \({\overline {\rm C}}\) with pole at ∞. We construct two examples of sets E of the minimum Hausdorff dimension with satisfying the Hölder condition with p = 1/2 either uniformly or locally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, NJ, Van Nostrand, 1966.

    MATH  Google Scholar 

  2. V. V. Andrievskii, The highest smoothness of the Green function implies the highest density of a set, Arkiv för Matematik 42 (2004), 217–238.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. V. Andrievskii and H.-P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer-Verlag, Berlin/New York, 2002.

    MATH  Google Scholar 

  4. A. Baernstein,Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169.

    Google Scholar 

  5. L. Bialas and A. Volberg, Markov’s property of the Cantor ternary set, Studia Math. 104 (1993), 259–268.

    MathSciNet  MATH  Google Scholar 

  6. L. Carleson and V. Totik, Hölder continuity of Green’s functions, Acta Sci. Math. (Szeged) 70 (2004), 558–608.

    MathSciNet  Google Scholar 

  7. J. A. Jenkins and K. Oikawa, On results of Ahlfors and Hayman, Illinois J. Math. 15 (1971), 664–671.

    MathSciNet  MATH  Google Scholar 

  8. M. A. Lavrentiev, Sur la continuité des fonctions univalentes, C. R.: Akad. Sci. USSR 4 (1936), 215–217.

    Google Scholar 

  9. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Springer-Verlag, Berlin, 1973.

    Book  MATH  Google Scholar 

  10. J. Lithner, Comparing two versions of Markov’s property, J. Approx. Theory 77 (1994), 202–211.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. G. Maz’ja, On the modulus of continuity of a harmonic function at a boundary point, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 135 (1984), 87–95.

    MathSciNet  Google Scholar 

  12. W. Pleśniak, A Cantor regular set which does not have Markov’s property, Ann. Pol. Math. LI (1990), 269–274.

    Google Scholar 

  13. Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin/New York, 1992.

    Book  Google Scholar 

  14. T. Ransford, Potential Theory in the Complex plane, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  15. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, New York/Berlin, 1997.

    MATH  Google Scholar 

  16. V. Totik, Markoff constants for Cantor sets, Acta Sci Math. (Szeged) 60 (1995), 715–734.

    MathSciNet  MATH  Google Scholar 

  17. V. Totik, On Markoff’s inequality, Constr. Approx. 18 (2002), 427–441.

    Article  MathSciNet  MATH  Google Scholar 

  18. —, Metric properties of harmonic measure, manuscript.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Andrievskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrievskii, V.V. On Sparse Sets with the Green Function of the Highest Smoothness. Comput. Methods Funct. Theory 5, 301–322 (2006). https://doi.org/10.1007/BF03321100

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321100

Keywords

2000 MSC

Navigation