Skip to main content
Log in

Complex Difference Equations of Malmquist Type

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

In a recent paper [1], Ablowitz, Halburd and Herbst applied Nevanlinna theory to prove some results on complex difference equations reminiscent of the classical Malmquist theorem in complex differential equations. A typical example of their results tells us that if a complex difference equation y(z + 1) + y(z − 1) = R(z, y) with R(z, y) rational in both arguments admits a transcendental meromorphic solution of finite order, then degy R(z, y) ≤ 2. Improvements and extensions of such results are presented in this paper. In addition to order considerations, a result (see Theorem 13) is proved to indicate that solutions having Borel exceptional zeros and poles seem to appear in special situations only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz, R. Halburd, and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), 889–905.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bank and R. Kaufman, An extension of Hölder’s theorem concerning the gamma function, Funkcialaj Ekvacioj 19 (1976), 53–63.

    MathSciNet  MATH  Google Scholar 

  3. L. Carleson and T. Gamelin, Complex Dynamics, Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  4. J. Clunie, The composition of entire and meromorphic functions, 1970 Mathematical Essays Dedicated to A. J. Macintyre, Ohio University Press, Athens, Ohio, 75–92.

    Google Scholar 

  5. G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo and D. Yang, Meromorphic solutions of generalized Schröder equations, Aequationes Math. 63 (2002), 110–135.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

    MATH  Google Scholar 

  7. G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Verlag, Basel-Boston, 1985.

    Book  MATH  Google Scholar 

  8. I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.

    Book  Google Scholar 

  9. S. Shimomura, Entire solutions of a polynomial difference equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 253–266.

    MathSciNet  MATH  Google Scholar 

  10. N. Yanagihara, Meromorphic solutions of some difference equations, Funkcialaj Ekvacioj 23 (1980), 309–326.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Heittokangas.

Additional information

J.H., R.K., I.L., and J.R. have been partially supported by the INTAS project grant 99-00089. K.T. has been partially supported by the Academy of Finland and the JSPS (the Grants-in-Aid for Scientific Research System, No. 12740085).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heittokangas, J., Korhonen, R., Laine, I. et al. Complex Difference Equations of Malmquist Type. Comput. Methods Funct. Theory 1, 27–39 (2001). https://doi.org/10.1007/BF03320974

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03320974

Keywords

2000 MSC

Navigation