Comparative Assessment of ISSR and RAPD Marker Assays for Genetic Diversity Analysis in Jojoba [Simmondsia chinensis (Link) Schneider]

  • Meenakshi BhardwajEmail author
  • Sanjogta Uppal
  • Sunita Jain
  • Pushpa Kharb
  • Ravinder Dhillon
  • Rajinder K. Jain
Short Communication


A collection of male and female plants of ten Jojoba [Simmondsia chinensis (Link) Schneider] genotypes was analyzed with 50 RAPID and 55 ISSR markers to compare the efficiency and utility of these techniques for detecting genetic polymorphism. RAPID and ISSR analysis yielded 442 and 566 scorable amplified products, respectively, of which 60.7 and 69.3% were polymorphic. ISSRs revealed efficiency over RAPDs due to high EMR (effective multiplex ratio), DI (diversity index, mean PIC per primer) and MI (marker index) values. Jaccard similarity matrices among male plants, among female plants and between male and female plants of the ten jojoba genotypes varied between 0.705-0.784. Dendrograms generated by cluster analysis (UPGMA, NTSYS-pc) supported by bootstrap values using RAPID and ISSR datasets led to grouping of most of male and females genotypes in separate clusters. While pattern of clustering remained more or less same, the two dendrograms did differ with respect to the grouping of a few male and female genotypes. The value of the Mantel test shows poor correlation (r = 0.41) between ISSR and RAPID marker datasets.

Key words

genetic diversity ISSR jojoba molecular markers RAPID 



random amplified polymorphic DNA


inter simple sequence repeat


polymorphic information content


unweighted paired group method using arithmetic averages


Numerical Taxonomy and Multivariate Analysis System


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benzioni A & Forti M, In Oil crops of the world (G Robbelen, RK Downey A Ashr, Editors), McGraw Hill Publishing Co., New York (1989) pp 448–461.Google Scholar
  2. 2.
    Weiss EA, Oilseed crops, Longman, London (1983) pp 507–527.Google Scholar
  3. 3.
    Paterson AH, Tanksley SD & Sorrells ME, Adv Agronom, 46 (1991) 39.CrossRefGoogle Scholar
  4. 4.
    Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S & Rafalski A, Mol. Breed, 2 (1996) 225.CrossRefGoogle Scholar
  5. 5.
    Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K & Nagaraju J, Genetics, 5 (2004) 2151.Google Scholar
  6. 6.
    Souframanien J & Gopalakrishna T, Theor App Genet, 109 (2004) 1687.CrossRefGoogle Scholar
  7. 7.
    Murray M & Thompson WF, Nucleic Acid Res, 6 (1980) 4321.CrossRefGoogle Scholar
  8. 8.
    Ghislain M, Zhang D, Fajardo D, Hanuman Z & Hijmans RH, Genet Resour Crop Evol, 46 (1999) 547.CrossRefGoogle Scholar
  9. 9.
    Chadha S & Gopalakrishna T, Current Science, 93 (2007) 688.Google Scholar
  10. 10.
    Rohlf FJ, NTSYS-pc:Numerical Taxonomy and Multivanate Analysis System. Version 2.2,Exeter Publications Setauket, New York (1998).Google Scholar
  11. 11.
    Yap IV & Nelson RJ, IRRI Discussion Paper Ser. No. 14. International Rice Research Institute, Los Baños (1996).Google Scholar
  12. 12.
    Mantel, N, Cancer Res, 27 (1967) 209.PubMedGoogle Scholar
  13. 13.
    Parsons BJ, Newbury HJ, Jackson MT & Ford-Lloyd BV, Mot Breed, 3 (1997) 115.CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Meenakshi Bhardwaj
    • 1
    Email author
  • Sanjogta Uppal
    • 1
  • Sunita Jain
    • 2
  • Pushpa Kharb
    • 3
  • Ravinder Dhillon
    • 4
  • Rajinder K. Jain
    • 3
  1. 1.Department of GeneticsCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Bioinformatics SectionCCS Haryana Agricultural UniversityHisarIndia
  3. 3.Department of Biotechnology and Molecular BiologyCCS Haryana Agricultural UniversityHisarIndia
  4. 4.Department of ForestryCCS Haryana Agricultural UniversityHisarIndia

Personalised recommendations