Role of C-terminal Cys-rich Region of Phytochelatin Synthase in Tolerance to Cadmium Ion Toxicity

  • Sachiko Matsumoto
  • Mun’delanji Vestergaard
  • Takafumi Konishi
  • Shingo Nishikori
  • Kentaro Shiraki
  • Naoki Tsuji
  • Kazumasa Hirata
  • Masahiro Takagi
Article

Abstract

Phytochelatins (PCs) are Cys-rich peptides, synthesized by PC synthase in response to heavy metal ions. The C-terminal Cys-rich region of the PC synthase has homology with functional domains of metallochaperone, metallothionein and thioredoxin. To test the possibility that the C-terminal Cys-rich region of PC synthase has a role in regulating PC synthesis, we introduced point mutations into the PC synthase, replacing Cys358, Cys359 Cys363 and Cys366 residues with Ala. The mutant PC synthase had a lower PC synthesis ability than the wild-type enzyme. Further, oxidative conditions severely damaged mutant PC synthase whilst the wild-type enzyme suffered less damage, suggesting that the Cys-rich region of PC synthase may play an important role in anti-oxidation activity. Although the C-terminal of PC synthase is not conserved, our studies support the possibility that this region performs several important biological functions.

Key words

phytochelatins phytochelatin synthase Arabidopsis thaliana cadmium heavy metals cysteine (Cys) C-terminal antioxidant toxicity 

Abbreviations

PC

phytochelatin

GSH

glutathione

LB

Luria broth

MV

methyl viologen

2-ME

2-mercaptoethanol

DTNB

5,5′-dithiobis-2-nitrobenzoic acid

HPLC

high-performance liquid chromatography

ROS

reactive oxygen species

NO

nitric oxide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grill E, Loffler S, Winnacker FL & Zenk, MH, Proc Natl Acad Sci, USA, 86 (1989) 16838.CrossRefGoogle Scholar
  2. 2.
    Vatamaniuk OK, Mari S, Lu YP & Rea, PA, J Biol Chem, 275 (2000) 31451.PubMedCrossRefGoogle Scholar
  3. 3.
    Hirata K, Tsuji N & Miyamoto K, J Biosci Bioeng, 100 (2005) 593.PubMedCrossRefGoogle Scholar
  4. 4.
    Zenk MH, Gene, 179 (1996) 21.PubMedCrossRefGoogle Scholar
  5. 5.
    Cobbett CS, Plant Physiol, 123 (2000) 825.PubMedCrossRefGoogle Scholar
  6. 6.
    Rauser WE, Plant Physiol, 109 (1995) 1141.PubMedCrossRefGoogle Scholar
  7. 7.
    Cobbett CS, Curr Opin Plant Biol, 3 (2006) 211.Google Scholar
  8. 8.
    Maier T, Yu C, Kullertz G & Clemens S, Planta, 218 (2003) 300.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsuji N, Nishikori S, Iwabe O, Matsumoto S, Shiraki K, Miyasaka H, Takagi M, Miyamoto K & Hirata K, Planta 222 (2005), 181.PubMedCrossRefGoogle Scholar
  10. 10.
    Cobbett CS & Goldsbrough P, Annu Rev Plant Biol, 53 (2002) 59.CrossRefGoogle Scholar
  11. 11.
    Tsuji N, Nishikori S, Iwabe O, Shiraki K, Miyasaka H, Takagi M, Hirata K & Miyamoto K, Biochem Biophys Res Commun, 315 (2004) 51.CrossRefGoogle Scholar
  12. 12.
    Matsumoto S, Shiraki K, Tsuji N, Hirata K, Miyamoto K & Takagi M, Sci Technol Adv Mat, 5 (2004) 377.CrossRefGoogle Scholar
  13. 13.
    O’Halloran TV & Culotta VC, J Biol Chem, 275 (2000) 25057.PubMedCrossRefGoogle Scholar
  14. 14.
    Viarengo A, Burlando B, Ceratto N & Panfoli I, Cell. Mol. Biol., 46 (2000) 407.PubMedGoogle Scholar
  15. 15.
    Suzuki KT, Nippon Rinsho, 54 (1996) 33.PubMedGoogle Scholar
  16. 16.
    Watson WH, Yang X, Choi YE, Jones DP & Kehrer JP, Toxicol Sci, 78 (2004) 3.PubMedCrossRefGoogle Scholar
  17. 17.
    Holmgren A, J Biol Chem, 264 (1989) 3963.Google Scholar
  18. 18.
    Lipton SA, Choi YB, Hakahashi H, Zhang D, Li W, Godzik A & Bankston LA, Trends Neurosci, 9 (2002) 474.CrossRefGoogle Scholar
  19. 19.
    Takagi M, Satofuka H, Amano S, Mizuno H, Eguchi Y, Hirata K, Miyamoto K, Fukui K & Imanaka T, J Biochem, 131 (2002) 233.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH & Miyamoto K, Biochem Biophys Res Commun, 293 (2002) 653.PubMedCrossRefGoogle Scholar
  21. 21.
    Vestergaard M, Matsumoto S, Nishikori S, Shiraki K, Hirata K & Takagi M, Anal Sci, 24 (2008) 277.PubMedCrossRefGoogle Scholar
  22. 22.
    Routolo R, Peracchi A, Bolchi A, Infusini G, Amoresano A & Ottonello S, J Biol Chem, 279 (2004) 14686.CrossRefGoogle Scholar
  23. 23.
    Konishi T, Matsumoto S, Tsurukawa Y, Shiraki K, Hirata K, Tamaru Y & Takagi M, J Biotechno, 122 (2006) 316.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sachiko Matsumoto
    • 1
  • Mun’delanji Vestergaard
    • 1
  • Takafumi Konishi
    • 1
  • Shingo Nishikori
    • 2
  • Kentaro Shiraki
    • 3
  • Naoki Tsuji
    • 4
  • Kazumasa Hirata
    • 4
  • Masahiro Takagi
    • 1
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomi City, IshikawaJapan
  2. 2.Division of Molecular Cell Biology, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
  3. 3.Institute of Applied PhysicsUniversity of TsukubaTsukuba, IbarakiJapan
  4. 4.Department of Environmental Bioengineering Laboratory, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan

Personalised recommendations