Skip to main content

Mapping QTLs for Component Traits Influencing Drought Stress Tolerance of Maize (Zea mays L) in India

Abstract

The present study was aimed at mapping of Quantitative Trait Loci (QTL) for various traits influencing the performance of maize genotypes under drought stress conditions in India. A set of 210 Recombinant Inbred Lines (RILs) developed at CIMMYT (Mexico) was analyzed in drought trials undertaken at Karimnagar (2002-03) and Hyderabad (2003-04). Analyses of the RIL datasets using Composite Interval Mapping (CIM) models led to the detection of 52 QTLs, including 22 QTLs under the control conditions and 30 QTLs under drought stress conditions at Karimnagar, and 14 QTLs influencing various characters under drought stress conditions at Hyderabad. A significant digenic epistatic QTL effect, other than the main effect QTLs, was detected for kernel number per ear under drought stress conditions. A comparison of the QTL information obtained from independent analyses of the Karimnagar and Hyderabad datasets revealed colocalization of QTLs on chromosomes 1, 2, 8 and 10 in the RILs influencing specific characters under drought stress conditions. Comparison of the QTL information with that reported from previous analyses of the same set of RILs at Mexico, Kenya and Zimbabwe revealed some ‘consensus QTLs’, which could be of significance in molecular marker-assisted breeding for drought tolerance in maize, besides functional genomics.

This is a preview of subscription content, access via your institution.

Abbreviations

ASI:

Anthesis-silking interval

CIM:

Composite Interval Mapping

CIMMYT:

International Maize and Wheat Improvement Center

Chr:

Chromosome

LR:

Likelihood Ratio

MAS:

Marker-assisted selection

RFLP:

Restriction Fragment Length Polymorphism

RIL:

Recombinant Inbred Line

QTL:

Quantitative Trait Loci

References

  1. 1

    Ribaut J-M, Banziger M, Setter T, Edmeades GO, Hoisington D, In Physiology and biotechnology integration for plant breeding (H Nguyen, A Blum, Editors), Marcel Dekker Inc, New York (2003), pp 571–611.

    Google Scholar 

  2. 2

    Edmeades GO, Bolanos J, Lafitte HR, In Proc 57 th Annual Corn and Sorghum Industry Res Conf, ASTA, Washington, USA (1992), pp 93–111.

    Google Scholar 

  3. 3

    Joshi PK, Singh NP, Singh NN, Gerpacio RV, Pingali PL, Maize in India: Production systems, constraints, and research priorities, CIMMYT, Mexico DF (2005).

    Google Scholar 

  4. 4

    Edmeades GO, Bolanos J, Chapman SC, Lafitte HR, Banziger M, Crop Sci, 39 (1999) 1306.

    Article  Google Scholar 

  5. 5

    Banziger M, Setimela PS, Hodson D, Vivek B, In Resilient crops for water limited environments: Proc of a Workshop, Cuernavaca, Mexico, May 24–28, 2004 (D Poland, M Sawkins, J-M Ribaut, D Hoisington, Editors), CIMMYT, Mexico DF (2004), pp 237–238.

    Google Scholar 

  6. 6

    Edmeades GO, Bolanos L, Elings A, Ribaut J-M, Banziger M, Westgate ME, In Physiology and modeling kernel set in maize (ME Westgate, KJ Boote, Editors), CSSA Special Publication No.29, CSSA, Madison, Wisconsin (2000), pp 43–73.

    Google Scholar 

  7. 7

    Ribaut J-M, Banziger M, Betran J, Hang C, Edmeades GO, Dreher K, Hoisington D, In Quantitative genetics, genomics and plant breeding (MS Kang, Editor), CABI Publishing, Wallingford, UK (2002), pp 211–226.

    Google Scholar 

  8. 8

    Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S, Ann Bot, 89 (2002) 941.

    PubMed  Article  CAS  Google Scholar 

  9. 9

    Prasanna BM, Ribaut J-M, In Stresses on maize in tropics (PH Zaidi, NN Singh, Editors), Directorate of Maize Research, New Delhi, India (2005), pp 462–472.

    Google Scholar 

  10. 10

    Tuberosa R, Salvi S, Trends PI Sci, 11 (2006) 405.

    Article  CAS  Google Scholar 

  11. 11

    Ribaut J-M, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D, Theor Appl Genet, 92 (1996) 905.

    Article  CAS  Google Scholar 

  12. 12

    Ribaut J-M, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA, Theor Appl Genet, 94 (1997) 887.

    Article  Google Scholar 

  13. 13

    Ribaut J-M, Gonzalez-de-Leon D, Jiang C, Edmeades GO, D Hoisington, In Developing drought and low N-tolerant maize (GO Edmeades, M Banziger, HR Mickelson, CB Pena-Valdivia, Editors), CIMMYT, Mexico DF, pp 396–400.

  14. 14

    Fracheboud Y, Ribaut J-M, Vargas M, Messmer R, Stamp P, J Exp Bot, 53 (2002) 1967.

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L, Genomics, 1 (1987) 174.

    PubMed  Article  CAS  Google Scholar 

  16. 16

    Zeng ZB, Genetics, 136 (1994) 1457.

    PubMed  CAS  Google Scholar 

  17. 17

    Lander ES, Botstein D, Genetics, 121 (1989) 185.

    PubMed  CAS  Google Scholar 

  18. 18

    Yang J, Hu CC, Ye XZ, Zhu J, QTL Network-2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China (2005) (http://ibi.zju.edu.cn/software/gtlnetwork).

    Google Scholar 

  19. 19

    Churchill GA, Doerge RW, Genetics, 138 (1994) 963.

    PubMed  CAS  Google Scholar 

  20. 20

    Prioul JL, Pelleschi S, Sene M, Thevenot C, Causse M, de Vienne D, Leonardi A, J Exp Bot, 337 (1999) 1281.

    Google Scholar 

  21. 21

    Guei RG, Wassom CE, Maydica, 37 (1992) 157.

    Google Scholar 

  22. 22

    Bolanos J, Edmeades GO, Field Crops Res, 48 (1996) 65.

    Article  Google Scholar 

  23. 23

    Banziger M, Edmeades GO, Beck D, Bellon M, Breeding for drought and nitrogen stress tolerance in maize: From theory to practice, CIMMYT, Mexico DF (2000).

    Google Scholar 

  24. 24

    Schussler JR, Westgate ME, Crop Sci, 35 (1995) 1074.

    Article  Google Scholar 

  25. 25

    Westgate ME, Boyer JS, Crop Sci, 26 (1986) 951.

    Article  Google Scholar 

  26. 26

    Westgate ME, Bassetti B, In Proc 45 th Annual Corn and Sorghum Industry Res Conf (D Wilkinson, Editor), ASTA, Washington (1990), pp 12–28.

    Google Scholar 

  27. 27

    Westgate ME, In Developing drought and low N-tolerant maize (GO Edmeades, M Banziger, HR Mickelson, CB Pena-Valdivia, Editors), CIMMYT, Mexico DF (1997), pp 136–141.

    Google Scholar 

  28. 28

    Hall AJ, Vilella F, Trapani N, Chimenti C, Field Crops Res, 5 (1982) 349.

    Article  Google Scholar 

  29. 29

    Bruce WB, Edmeades GO, Barker TC, J Exp Bot, 53 (2002) 13.

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Agrama HAS, Moussa ME, Euphytica, 91 (1996) 89.

    Article  CAS  Google Scholar 

  31. 31

    Beavis WD, Smith OS, Grant D, Fincher R, Crop Sci, 34 (1994) 882.

    Article  Google Scholar 

  32. 32

    Veldboom LR, Lee M, Woodman WL, Theor Appl Genet, 88 (1994) 7.

    Article  CAS  Google Scholar 

  33. 33

    Beavis WD, In Molecular dissection of complex traits (AH Paterson, Editor), CRC Press, Boca Raton, USA (1998), pp 145–162.

    Google Scholar 

  34. 34

    Yu S, Li J, Xu C, Tan Y, Gao Y, Li X, Zhang O, Saghai-Maroof M, Proc Natl Acad Sci, USA, 94 (1997) 9226.

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang O, Theor Appl Genet, 105 (2002) 248.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. M. Prasanna.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prasanna, B.M., Beiki, A.H., Sekhar, J.C. et al. Mapping QTLs for Component Traits Influencing Drought Stress Tolerance of Maize (Zea mays L) in India. J. Plant Biochem. Biotechnol. 18, 151–160 (2009). https://doi.org/10.1007/BF03263313

Download citation

Key words

  • maize
  • QTL
  • RILs
  • drought stress
  • India