Skip to main content
Log in

Production of Polyclonal Antibodies Using Recombinant Coat Protein of Papaya ringspot virus and their Use in Immunodiagnosis

  • Short Communication
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of polyclonal antibodies requires large amount of purified virus that can be avoided by the use of recombinant coat protein (CP). Recombinant CP of Papaya ringspot virus (PRSV) was thus used for the production of polyclonal antibodies as the virus purification from papaya tissues provides low virus yields. CP was expressed as a fusion protein (∼72 kD) containing a fragment of E. coli maltose binding protein. Polyclonal antibodies from rabbits immunized with the fusion protein, successfully detected natural infection of PRSV in papaya and cucurbits samples collected from different locations at 1:4000 dilution in direct antigen-coated enzyme-linked immunosorbent assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

PRSV:

Papaya ringspot virus

CP:

coat protein

MBP:

maltose binding protein

TBS:

tris buffer saline

DAC-ELISA:

direct antigen-coated enzyme-linked immunosorbent assay

References

  1. Fauquet CM, Mayo MA, Manilof J, Desselberger V & Ball LA, Eighth Report of the International Committee on Taxonomy of Viruses, Academic Press, New York (2005) pp 1259.

    Google Scholar 

  2. Varma A, In The plant viruses, Vol 4 (RG Milne, Editor), Plenum Press, New York, (1988) pp 371–376.

    Google Scholar 

  3. Gonsalves D, Annu Rev Phytopath, 36 (1998) 415.

    Article  CAS  Google Scholar 

  4. Capoor SP & Varma PM, Indian J Agril Sci, 28 (1958) 225.

    Google Scholar 

  5. Roy G, Jain RK, Bhat AI & Varma A, Indian Phytopath, 52 (1999) 14.

    Google Scholar 

  6. Sharma J, Jain RK, Ramiah M & Varma A, Indian Phytopath, 58 (2005) 245.

    Google Scholar 

  7. Helias V, Jacquot E, Guillet M, Hingrat YL & Ducray DG, J Virol Methods, 110 (2003) 91.

    Article  PubMed  CAS  Google Scholar 

  8. Vaira AM, Vecchiati M, Masenga V & Accotto GP, J Virol Methods, 56 (1996) 209.

    Article  PubMed  CAS  Google Scholar 

  9. Dea S, Wilson L, Therrien D & Cornaglia E, J Virol Methods, 87 (2000) 109.

    Article  PubMed  CAS  Google Scholar 

  10. Nickel O, Targon MLNP, Fajardo TVM, Machado MA & Trivilin AP, Fitopatol Bras, 29 (2004) 558.

    Article  Google Scholar 

  11. Fajardo TVM, Barros Dr, Nickel O, Kuhn GB & Zerbini FM, Fitopatol Bras, 32 (2007) 496.

    Article  Google Scholar 

  12. Bag S, Agarwal S & Jain RK, Indian Phytopath, 60 (2007) 244.

    CAS  Google Scholar 

  13. Sambrook J & Russell DW, Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, New York, (2001).

    Google Scholar 

  14. Laemmli UK, Nature, 227 (1970) 680.

    Article  PubMed  CAS  Google Scholar 

  15. Jain RK, Pandey AN, Krishna Reddy M & Mandal B, J Virol Methods, 130 (2005) 162.

    Article  PubMed  CAS  Google Scholar 

  16. Clark MF & Bar-Joseph M, In Methods in virology Vol 2, Academic Press, New York (1984) p 51–85.

    Google Scholar 

  17. Hema M, Kirth N, Sreenivasulu P & Savithri HS, Arch Virol, 48 (2003) 1185.

    Article  Google Scholar 

  18. Nikolaeva OV, Karasev AV, Gumpf DJ, Lee RF & Garnsey SM, Phytopathology, 85 (1995) 691.

    Article  CAS  Google Scholar 

  19. Zeng F, Yeung W, Lu Y, Lun Z, Lv J, Liu F, Zhang H, Zhao H, Zhen C & Liu X, World J Microbiol Biotechnol, 24 (2008) 457.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, S., Krishna Reddy, M. & Jain, R.K. Production of Polyclonal Antibodies Using Recombinant Coat Protein of Papaya ringspot virus and their Use in Immunodiagnosis. J. Plant Biochem. Biotechnol. 18, 109–111 (2009). https://doi.org/10.1007/BF03263306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263306

Key words