Skip to main content
Log in

Identification of a Phosphoprotein Expressed During Somatic Embryogenesis in Wheat Leaf Base Cultures

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2,4-D mediated induction of somatic embryogenesis in wheat is enhanced in the presence of Ca++ and its removal by EGTA reduces the response significantly. Changes that occur at the polypeptide level following 2,4-D treatment were analysed. Intense cell division activity was discernable in the leaf base explants within an hour of treatment. Changes in protein profiles were prominent in the membrane fraction as compared to the soluble fraction. The protein profile of the leaf base culture with somatic embryos was distinct from the calli induced from mature embryos on a 2,4-D containing medium. The role of Ca2+ in the induction of somatic embryogenesis was demonstrated by the use of EGTA (a calcium chelator), verapamil, nifedipine (calcium channel blockers), W7 (calmodulin antagonist) and Li (PI inhibitor). In vitro protein phosphorylation studies showed that 2,4-D, calcium and related treatments inhibit phosphorylation of proteins. In the membrane fraction proteins, accumulation of polypeptides at the low molecular weight range was seen in samples treated with verapamil and W7, and a 30 kO polypeptide in the samples treated with calmodulin antagonist, W7. Autoradiography of membrane fraction proteins displayed the presence of a 16 kO protein phosphorylated in samples treated with verapamil, nifedipine and W7. It thus appears that 2,4-D and Ca++ prevent the phosphorylation of this phosphoprotein. These results thus indicate the action of 2,4-D via the Ca2+-CaM signaling pathway in triggering the induction of somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja PS, Pental D & Cocking EC, Z Pflanzenzuchf, 89 (1982) 139.

    Google Scholar 

  2. Wernicke W & Milkowitz L, J Plant Physiol, 115 (1984) 49.

    Article  CAS  PubMed  Google Scholar 

  3. Rajyalakshmi K, Grover A, Maheshwari N, Tyagi AK & Maheshwari SC, Physiol Plant, 56 (1991) 374.

    Google Scholar 

  4. Mahalakshmi A, Khurana JP & Khurana P, Plant Biotech, 17 (2003) 267.

    Article  Google Scholar 

  5. Sung ZR & Okimoto R, Proc Natl Acad Sci, USA, 78 (1981) 3683.

    Article  CAS  Google Scholar 

  6. Stirn S & Jacobsen HJ, Plant Cell Rep, 6 (1987) 50.

    Article  CAS  PubMed  Google Scholar 

  7. Chen LJ & Luthe DS, Plant Sci, 48 (1987) 181.

    Article  CAS  Google Scholar 

  8. Hahne G, Mayer JE & Lorz H, Plant Sci, 55 (1988) 267.

    Article  CAS  Google Scholar 

  9. McGee JD, Williams EG, Collins GB & Hildebrand DF, J Plant Physiol, 135 (1989) 306.

    Article  CAS  Google Scholar 

  10. Hilbert JL, Dubois T & Vasseur J, Plant Physiol Biochem, 30 (1992) 733.

    CAS  Google Scholar 

  11. Yuffa AM, Garcia EGD & Nicto MS, Plant Cell Rep, 13 (1994) 197.

    Article  CAS  PubMed  Google Scholar 

  12. Dupire L, Decout E, Vasseur J & Delbreil B, Plant Sci, 147 (1999) 9.

    Article  CAS  Google Scholar 

  13. Sallandrouze A, Faurobert M, El Maataoui M & Espagnac H, Electrophoresis, 20 (1999) 1109.

    Article  CAS  PubMed  Google Scholar 

  14. Mahalakshmi A, Ph. D. thesis, Univ Delhi, India (1994)

    Google Scholar 

  15. Murashige T & Skoog F, Physiol Plant, 15 (1962) 473.

    Article  CAS  Google Scholar 

  16. Veluthambi K & Poovaiah BW, Plant Physiol, 81 (1986) 838.

    Article  Google Scholar 

  17. Laemmil UK, Nature, 227 (1970) 680.

    Article  Google Scholar 

  18. Bradford MM, Anal Biochem, 72 (1976) 248.

    Article  CAS  PubMed  Google Scholar 

  19. Wray, W, Boulikas T, Wray VP & Hancock R, Anal Biochem, 118 (1981) 197.

    Article  CAS  PubMed  Google Scholar 

  20. Short TW & Briggs WR, Plant Physiol, 92 (1990) 179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nato A, Mirashi A, Tichtinsky G, Mirashi M, Faure JP, Lavergne D, Buyser JD, Jean C, Ducreux G & Henry Y, Plant Physiol, 113 (1997) 801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poovaiah BW & Reddy ASN, CRC Crit Rev Plant Sci, 6 (1993) 47.

    Article  Google Scholar 

  23. Guern J, Ephritikhine G, Imhoff V & Pradier JM, In Progress in plant cellular and molecular biology (HJJ Nijkamp, LHW Van Der Plas, J Van Aartrijk, Editors) Kluwer Academic Publishers, Dordrecht, Netherlands (1990) p 469.

    Google Scholar 

  24. Milliner PA, Curr Opin Cell Biol, 7 (1995) 224.

    Article  Google Scholar 

  25. Lefkowitz RJ, Cell, 74 (1993) 409.

    Article  CAS  PubMed  Google Scholar 

  26. Pelech SL, Curr Biol, 3 (1993) 513.

    Article  CAS  PubMed  Google Scholar 

  27. Varnold RL & Moore DJ, Bot Gaz, 146 (1985) 315.

    Article  CAS  Google Scholar 

  28. Reynolds TL, Plant Sci, 150 (2000) 201.

    Article  CAS  Google Scholar 

  29. Anil VS, Harmon AC & Rao KS, PlantPhysiol, 122 (2000) 1035.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Khurana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patnaik, D., Khurana, P. Identification of a Phosphoprotein Expressed During Somatic Embryogenesis in Wheat Leaf Base Cultures. J. Plant Biochem. Biotechnol. 14, 149–154 (2005). https://doi.org/10.1007/BF03263243

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263243

Key words

Navigation