Skip to main content
Log in

Proline Metabolism Under Water Stress in the Leaves and Roots of Brassica juncea Cultivars Differing in Drought Tolerance

  • Short Communication
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant water relations, proline content and activities of pyrroline-5-carboxylate synthetase (P5CS) and proline oxidase (PO) were studied in five Brassica juncea genotypes differing in drought response. Under water stress, drought tolerant cv Varuna showed maximum osmotic adjustment value (1/b) of 3.21. In this variety, proline content increased from 8.4 and 5.3 μmol g−1 dry weight under normal conditions to 128.2 and 44.5 μmol g−1 dry weight under stress conditions in the leaves and roots respectively. The increase in proline content in less drought tolerant variety Prakash was from 7.0 and 1.8 μmol g−1 dry weight In the absence of stress to 62.9 and 13.4 μmol g−1 dry weight in the presence of stress in leaves and roots respectively. Compared to the respective controls, increase in the activity of proline biosynthetic enzyme P5CS of roots and leaves under water stress was maximum (∼ 94%) in Varuna and minimum in Prakash (∼16%). Reduction in the activity of proline degrading enzyme PO due to stress was also maximum in the leaves (75%) and roots (87%) of Varuna. These results showed genotype dependent effect of water stress on plant water relations and proline metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bray EA, Plant Physiol, 103 (1993) 1035.

    PubMed  CAS  Google Scholar 

  2. Jones MM & Turner NC, Plant Physiol, 61 (1978) 122.

    Article  PubMed  CAS  Google Scholar 

  3. Morgan JM, J Exptl Bot, 31 (1980) 655.

    Article  Google Scholar 

  4. Delauney AJ and Verma DPS, Plant J, 4 (1993) 215

    Article  CAS  Google Scholar 

  5. Jain S, Nainawatee HS, Jain RK & Chowdhury JB, Plant Cell Reports, 4 (1991) 684.

    Google Scholar 

  6. Trotel R, Bouchereau A, Niogret MF & Larher, F, Plant Sci, 118 (1996) 31.

    Article  CAS  Google Scholar 

  7. Venekamp JH, Lampe JEM & Koot JTM, J Plant Physiol, 133 (1989) 654.

    Article  CAS  Google Scholar 

  8. Stewart CR & Hansen AD, Monosanto Lectures, Plant Sci, (1981) 172.

    Google Scholar 

  9. Dix PJ & Pearce RS. Z Pflanzenphysiol, 102 (1981) 243.

    CAS  Google Scholar 

  10. Voshuba V, Kiyosue, Nakashima K, Vawaguchi-Shinozaki K & Shinozaki K, Plant Cell Physiol, 38 (1997) 1095.

    Article  Google Scholar 

  11. Kandpal RP, Vidyanathan CS, Udaykumar M, Krisnasastry KS & Appaji-Rao N, J Biol Sci, 3 (1981) 361.

    CAS  Google Scholar 

  12. Madan S, Nainawatee HS, Jain RK & Chowdhury JB, Ann Bot, 76 (1995) 51.

    Article  CAS  Google Scholar 

  13. Chhabra ML, Dhingra HR & Vadav TP, Indian J Plant Physiol, 24 (1981) 8.

    Google Scholar 

  14. Jain RK, Jain S, Nainawatee HS & Chowdhury JB, Euphytica, 48 (1990) 141.

    Article  Google Scholar 

  15. Arnon DI & Hoagland DR, Soil Sci, 50 (1940) 299.

    Google Scholar 

  16. Turner NC, Plant Soil, 58 (1981) 339.

    Article  Google Scholar 

  17. Morgan JM, Annu Rev Plant Physiol, 35 (1984) 299.

    Article  Google Scholar 

  18. Bates LS, Waldren RP & Teare ID, Plant Soil, 39 (1973) 205.

    Article  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL & Randall RJ, J Biol Chem, 193 (1951) 265

    PubMed  CAS  Google Scholar 

  20. Hayzer DJ & Leisinger T, J Gen Microbiol, 118 (1980) 287.

    PubMed  CAS  Google Scholar 

  21. Strecker HJ, Methods Enzymol, 17B (1971) 251.

    Article  Google Scholar 

  22. Smith LI & Opie JW, in Organic synthesis (EC Harring, Editor) John Wiley, New York (1967) pp 56–58.

    Google Scholar 

  23. Ashraf M & Mahmood S, Environ Expt Bot, 30 (1990) 93.

    Article  Google Scholar 

  24. Morgan JM, Field Crop Res, 29 (1992) 91.

    Article  Google Scholar 

  25. Patel JA & Vora AB, Plant Soil, 84 (1985) 427.

    Article  CAS  Google Scholar 

  26. Ketchum REB, Warren RS, Klima LJ, Lopez-Gutieere F & Nabors MW, J Plant Physiol, 137 (1991) 368.

    Article  CAS  Google Scholar 

  27. Aspinall D & Paleg LG, in The Physiology and biochemistry of drought resistance in plants (LG Paleg, D Aspinall, Editors), Academic Press, Sydney (1981) pp 205–241.

    Google Scholar 

  28. Kneh JSH & Bright JWJ, Plant Sci Lett, 27 (1982) 233.

    Article  Google Scholar 

  29. Wldholm JM, Iowa State J Res, 62 (1988) 587.

    Google Scholar 

  30. Watad AEA, Reinhold L & Lerner HR, Plant Physiol, 73 (1983) 624.

    Article  PubMed  CAS  Google Scholar 

  31. Kavikishore PB, Hang Z, Miao G, Hu C & Verma DPS, Plant Physiol, 108 (1995) 1387.

    Google Scholar 

  32. Strizhof N, Abraham E, Okresz L, Blickllng S, Zilberstein L, Schell, J, Koncz C & Szabados L, Plant J, 12 (1997) 557.

    Article  Google Scholar 

  33. Charest C & Phan CT, Physiol Plant, 80 (1990) 159.

    Article  CAS  Google Scholar 

  34. Kohl DH, Lin JJ, Shearer G & Schubert KR, Plant Physiol, 94 (1990) 1258.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phutela, A., Jain, V., Dhawan, K. et al. Proline Metabolism Under Water Stress in the Leaves and Roots of Brassica juncea Cultivars Differing in Drought Tolerance. J. Plant Biochem. Biotechnol. 9, 35–39 (2000). https://doi.org/10.1007/BF03263081

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263081

Key words

Navigation