The Use of Nonsteroidal Anti-Inflammatory Drugs for Exercise-Induced Muscle Damage

Implications for Skeletal Muscle Development

Abstract

Exercise-induced muscle damage (EIMD) is a common condition resulting from a bout of vigorous exercise, particularly if the individual is unaccustomed to performance of the given movement. Symptoms of EIMD include delayed-onset muscle soreness (DOMS) and a loss of physical function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely prescribed post-exercise to alleviate these symptoms and restore normal physical function. Of potential concern for those who use NSAIDs to treat EIMD is the possibility that they may impair the adaptive response to exercise. Specifically, there is emerging evidence that the action of cyclo-oxygenase (COX) enzymes, and COX-2 in particular, are important and even necessary to achieve maximal skeletal muscle hypertrophy in response to functional overload. Given that NSAIDs exert their actions by blocking COX and thus suppressing prostaglandin production, a theoretical rationale exists whereby these drugs may have detrimental effects on muscle regeneration and super-compensation. Therefore, the purpose of this article is to extensively review the literature and evaluate the effects of NSAIDs on muscle growth and development. Based on current evidence, there is little reason to believe that the occasional use of NSAIDs will negatively affect muscle growth, although the efficacy for their use in alleviating inflammatory symptoms remains questionable. Evidence on the hypertrophic effects of the chronic use of NSAIDs is less clear. In those who are untrained, it does not appear that regular NSAID use will impede growth in the short term, and at least one study indicates that it may in fact have a positive impact. Given their reported impairment of satellite cell activity, however, longer-term NSAID use may well be detrimental, particularly in those who possess greater growth potential.

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Table II
Table III

References

  1. 1.

    Vierck J, O’Reilly B, Hossner K, et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 2000; 24(5): 263–72.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Clarkson PM, Byrnes WC, McCormick KM, et al. Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. Int J Sports Med 1986 06; 7(3): 152–5.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Gibala MJ, MacDougall JD, Tarnopolsky MA, et al. Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol 1995 Feb; 78(2): 702–8.

    PubMed  CAS  Google Scholar 

  4. 4.

    Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 2002 11; 81(11): 52–69.

    Article  Google Scholar 

  5. 5.

    Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 2001 Dec 1; 537 (Pt 2): 333–45.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Stauber WT, Clarkson PM, Fritz VK, et al. Extracellular matrix disruption and pain after eccentric muscle action. J Appl Physiol 1990 Sep; 69(3): 868–74.

    PubMed  CAS  Google Scholar 

  7. 7.

    Malm C. Exercise-induced muscle damage and inflammation: fact or fiction? Acta Physiol Scand 2001 03; 171(3): 233–9.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Baum C, Kennedy DL, Forbes MB. Utilization of non-steroidal antiinflammatory drugs. Arthritis Rheum 1985 Jun; 28(6): 686–92.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Warner DC, Schnepf G, Barrett MS, et al. Prevalence, attitudes, and behaviors related to the use of nonsteroidal anti-inflammatory drugs (NSAIDs) in student athletes. J Adolesc Health 2002 Mar; 30(3): 150–3.

    PubMed  Article  Google Scholar 

  10. 10.

    Vane JR, Botting RM. Anti-inflammatory drugs and their mechanism of action. Inflamm Res 1998 Oct; 47 Suppl. 2: S78–87.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 2005 Aug; 107(2): 139–54.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Dey I, Lejeune M, Chadee K. Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 2006 Nov; 149(6): 611–23.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Fujino H, Xu W, Regan JW. Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J Biol Chem 2003 Apr 4; 278(14): 12151–6.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Horsley V, Pavlath GK. Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J Cell Biol 2003 04/14; 161(1): 111–8.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Soltow QA, Betters JL, Sellman JE, et al. Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med Sci Sports Exerc 2006 May; 38(5): 840–6.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Weinheimer EM, Jemiolo B, Carroll CC, et al. Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: implications for COX-inhibiting drugs and protein synthesis. Am J Physiol Regul Integr Comp Physiol 2007 Jun; 292(6): R2241–8.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Peterson JM, Trappe TA, Mylona E, et al. Ibuprofen and acetaminophen: effect on muscle inflammation after eccentric exercise. Med Sci Sports Exerc 2003 Jun; 35(6): 892–6.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Burd NA, Dickinson JM, Lemoine JK, et al. Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans. Am J Physiol Endocrinol Metab 2010 Feb; 298(2): E354–61.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Bondesen BA, Mills ST, Kegley KM, et al. The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol 2004 Aug; 287(2): C475–83.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Prisk V, Huard J. Muscle injuries and repair: the role of prostaglandins and inflammation. Histol Histopathol 2003 Oct; 18(4): 1243–56.

    PubMed  CAS  Google Scholar 

  21. 21.

    Mikkelsen UR, Schjerling P, Helmark IC, et al. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise. Scand J Med Sci Sports 2011 Oct; 21(5): 630–44.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Anderson BJ. Paracetamol (acetaminophen): mechanisms of action. Paediatr Anaesth 2008 Oct; 18(10): 915–21.

    PubMed  Article  Google Scholar 

  23. 23.

    Botting RM. Mechanism of action of acetaminophen: is there a cyclooxygenase 3? Clin Infect Dis 2000 Oct; 31 Suppl. 5: S202–10.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Diaz-Gonzalez F, Sanchez-Madrid F. Inhibition of leukocyte adhesion: an alternative mechanism of action for anti-inflammatory drugs. Immunol Today 1998 Apr; 19(4): 169–72.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Dudley GA, Czerkawski J, Meinrod A, et al. Efficacy of naproxen sodium for exercise-induced dysfunction muscle injury and soreness. Clin J Sport Med 1997 Jan; 7(1): 3–10.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Bourgeois J, MacDougall D, MacDonald J, et al. Naproxen does not alter indices of muscle damage in resistance-exercise trained men. Med Sci Sports Exerc 1999 Jan; 31(1): 4–9.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Sayers SP, Knight CA, Clarkson PM, et al. Effect of ketoprofen on muscle function and sEMG activity after eccentric exercise. Med Sci Sports Exerc 2001 May; 33(5): 702–10.

    PubMed  CAS  Google Scholar 

  28. 28.

    Tokmakidis SP, Kokkinidis EA, Smilios I, et al. The effects of ibuprofen on delayed muscle soreness and muscular performance after eccentric exercise. J Strength Cond Res 2003 Feb; 17(1): 53–9.

    PubMed  Google Scholar 

  29. 29.

    Howell J, Conatser R, Chleboun G, et al. The effect of nonsteroidal anti-inflammatory drugs on recovery from exercise induced muscle injury. 1: flurbiprofen. J Muscoskel Pain 1998; 6: 59–68.

    Article  Google Scholar 

  30. 30.

    Stone MB, Merrick MA, Ingersoll CD, et al. Preliminary comparison of bromelain and ibuprofen for delayed onset muscle soreness management. Clin J Sport Med 2002 Nov; 12(6): 373–8.

    PubMed  Article  Google Scholar 

  31. 31.

    Paulsen G, Egner IM, Drange M, et al. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scand J Med Sci Sports 2010 Feb; 20(1): e195–207.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Connolly DA, Sayers SP, McHugh MP. Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 2003 Feb; 17(1): 197–208.

    PubMed  Google Scholar 

  33. 33.

    Rodemann HP, Goldberg AL. Arachidonic acid, prostaglandin E2 and F2 alpha influence rates of protein turnover in skeletal and cardiac muscle. J Biol Chem 1982 Feb 25; 257(4): 1632–8.

    PubMed  CAS  Google Scholar 

  34. 34.

    Palmer RM. Prostaglandins and the control of muscle protein synthesis and degradation. Prostaglandins Leukot Essent Fatty Acids 1990 Feb; 39(2): 95–104.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 2006 08; 97(6): 643–63.

    PubMed  Article  Google Scholar 

  36. 36.

    Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 2010 Oct; 24(10): 2857–72.

    PubMed  Article  Google Scholar 

  37. 37.

    Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 1997 Jul; 273 (1 Pt 1): E99–107.

    PubMed  CAS  Google Scholar 

  38. 38.

    Drummond MJ, Dreyer HC, Pennings B, et al. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 2008 May; 104(5): 1452–61.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Vandenburgh HH, Hatfaludy S, Sohar I, et al. Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. Am J Physiol 1990 Aug; 259 (2 Pt 1): C232–40.

    PubMed  CAS  Google Scholar 

  40. 40.

    Trappe TA, White F, Lambert CP, et al. Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab 2002 Mar; 282(3): E551–6.

    PubMed  CAS  Google Scholar 

  41. 41.

    Petersen SG, Miller BF, Hansen M, et al. Exercise and NSAIDs: effect on muscle protein synthesis in patients with knee osteoarthritis. Med Sci Sports Exerc 2011 Mar; 43(3): 425–31.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Zammit PS. All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 2008 Sep 15; 121 (Pt 18): 2975–82.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 1971 Aug; 170(4): 421–35.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Barton-Davis ER, Shoturma DI, Sweeney HL. Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand 1999 12; 167(4): 301–5.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Timmons JA. Variability in training-induced skeletal muscle adaptation. J Appl Physiol 2011 Mar; 110(3): 846–53.

    PubMed  Article  Google Scholar 

  46. 46.

    Petrella JK, Kim J, Mayhew DL, et al. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol 2008 06; 104(6): 1736–42.

    PubMed  Article  Google Scholar 

  47. 47.

    Cornelison DD, Wold BJ. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. DevBiol 1997 Nov 15; 191(2): 270–83.

    CAS  Google Scholar 

  48. 48.

    Sinha-Hikim I, Cornford M, Gaytan H, et al. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 2006; 91(8): 3024–33.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet 2000 01; 57(1): 16–25.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    O’Connor RS, Pavlath GK. Point:counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 2007 Sep; 103(3): 1099–100.

    PubMed  Article  Google Scholar 

  51. 51.

    Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 2008 06; 154(3): 557–68.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    McCarthy JJ, Esser KA. Counterpoint: satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 2007; 103: 1100–2.

    PubMed  Article  Google Scholar 

  53. 53.

    Zalin RJ. Prostaglandins and myoblast fusion. Dev Biol 1977 09; 59(2): 241–8.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Santini MT, Indovina PL, Hausman RE. Prostaglandin dependence of membrane order changes during myogenesis in vitro. Biochim Biophys Acta 1988 Mar 3; 938(3): 489–92.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Otis JS, Burkholder TJ, Pavlath GK. Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 2005; 310(2): 417–25.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Mendias CL, Tatsumi R, Allen RE. Role of cyclooxygenase-1 and -2 in satellite cell proliferation, differentiation, and fusion. Muscle Nerve 2004 10; 30(4): 497–500.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Bondesen BA, Mills ST, Pavlath GK. The COX-2 pathway regulates growth of atrophied muscle via multiple mechanisms. Am J Physiol, Cell Physiol 2006 06; 290(6): 1651–9.

    Article  Google Scholar 

  58. 58.

    Mackey AL, Kjaer M, Dandanell S, et al. The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 2007 Aug; 103(2): 425–31.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Mikkelsen UR, Langberg H, Helmark IC, et al. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol 2009 Nov; 107(5): 1600–11.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Yang SY, Goldspink G. Different roles of the IGF-I ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 2002; 522(1–3): 156–60.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 2003 07; 203(1): 89–99.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Novak ML, Billich W, Smith SM, et al. COX-2 inhibitor reduces skeletal muscle hypertrophy in mice. Am J Physiol Regul Integr Comp Physiol 2009 Apr; 296(4): R1132–9.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Krentz JR, Quest B, Farthing JP, et al. The effects of ibuprofen on muscle hypertrophy, strength, and soreness during resistance training. Appl Physiol Nutr Metab 2008 Jun; 33(3): 470–5.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Trappe TA, Carroll CC, Dickinson JM, et al. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am J Physiol Regul Integr Comp Physiol 2011 Mar; 300(3): R655–62.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Petersen SG, Beyer N, Hansen M, et al. Nonsteroidal anti-inflammatory drug or glucosamine reduced pain and improved muscle strength with resistance training in a randomized controlled trial of knee osteoarthritis patients. Arch Phys Med Rehabil 2011 Aug; 92(8): 1185–93.

    PubMed  Article  Google Scholar 

  66. 66.

    Petrella JK, Kim JS, Cross JM, et al. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 2006 Nov; 291(5): E937–46.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was not funded by any outside organization. Brad Schoenfeld is the sole author of this work. There are no conflicts of interest present that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Brad J. Schoenfeld MSc, CSCS.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schoenfeld, B.J. The Use of Nonsteroidal Anti-Inflammatory Drugs for Exercise-Induced Muscle Damage. Sports Med 42, 1017–1028 (2012). https://doi.org/10.1007/BF03262309

Download citation

Keywords

  • Satellite Cell
  • Eccentric Exercise
  • Muscle Protein Synthesis
  • Nonselective NSAID
  • Satellite Cell Activity