Skip to main content

Unique Aspects of Competitive Weightlifting

Performance, Training and Physiology

Abstract

Weightlifting is a dynamic strength and power sport in which two, multijoint, whole-body lifts are performed in competition; the snatch and clean and jerk. During the performance of these lifts, weightlifters have achieved some of the highest absolute and relative peak power outputs reported in the literature. The training structure of competitive weightlifters is characterized by the frequent use of high-intensity resistance exercise movements. Varied coaching and training philosophies currently exist around the world and further research is required to substantiate the best type of training programme for male and female weightlifters of various age groups. As competitive weightlifting is contested over eight male and seven female body weight categories, the anthropometric characteristics of the athletes widely ranges. The body compositions of weightlifters are similar to that of athletes of comparable body mass in other strength and power sports. However, the shorter height and limb lengths of weightlifters provide mechanical advantages when lifting heavy loads by reducing the mechanical torque and the vertical distance that the barbell must be displaced. Furthermore, the shorter body dimensions coincide with a greater mean skeletal muscle cross-sectional area that is advantageous to weightlifting performance. Weightlifting training induces a high metabolic cost. Although dietary records demonstrate that weightlifters typically meet their required daily energy intake, weightlifters have been shown to over consume protein and fat at the expense of adequate carbohydrate. The resulting macronutrient imbalance may not yield optimal performance gains. Cross-sectional data suggest that weightlifting training induces type IIX to IIA fibre-type transformation. Furthermore, weightlifters exhibit hypertrophy of type II fibres that is advantageous to weightlifting performance and maximal force production. As such, the isometric peak force and contractile rate of force development of weightlifters is ~15–20% and ~13–16% greater, respectively, than in other strength and power athletes. In addition, weightlifting training has been shown to reduce the typical sex-related difference in the expression of neuromuscular strength and power. However, this apparent sex-related difference appears to be augmented with increasing adult age demonstrating that women undergo a greater age-related decline in muscle shortening velocity and peak power when compared with men. Weightlifting training and competition has been shown to induce significant structural and functional adaptations of the cardiovascular system. The collective evidence shows that these adaptations are physiological as opposed to pathological. Finally, the acute exercise-induced testosterone, cortisol and growth hormone responses of weightlifters have similarities to that of following conventional strength and hypertrophy protocols involving large muscle mass exercises. The routine assessment of the basal testosterone: cortisol ratio may be beneficial when attempting to quantify the adaptive responses to weightlifting training. As competitive weightlifting is becoming increasingly popular around the world, further research addressing the physiological responses and adaptations of female weightlifters and younger (i.e. ≤17 years of age) and older (i.e. ≥35 years of age) weightlifters of both sexes is required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4

References

  1. 1.

    Garhammer J. Power production by Olympic weightlifters. Med Sci Sports Exerc 1980; 12 (1): 54–60

    CAS  PubMed  Google Scholar 

  2. 2.

    Garhammer J. Energy flow during Olympic weightlifting. Med Sci Sports Exerc 1982; 14 (5): 353–60

    CAS  PubMed  Google Scholar 

  3. 3.

    Garhammer J. Biomechanical profiles of Olympic weightlifters. Int J Sport Biomech 1985; 1: 122–30

    Google Scholar 

  4. 4.

    Garhammer J. A comparison of maximal power outputs between elite male and female weightlifters in competition. Int J Sport Biomech 1991; 7: 3–11

    Google Scholar 

  5. 5.

    Garhammer J. A review of power output studies of olympic and powerlifting: methodology, performance prediction, and evaluation tests. J Strength Cond Res 1993; 7 (2): 76–89

    Google Scholar 

  6. 6.

    Storey A, Wong S, Smith H, et al. Divergent muscle functional and architectural responses to two successive high intensity resistance exercise sessions in competitive weightlifters and resistance trained adults. Eur J Appl Physiol. Epub 2012 Feb 16

  7. 7.

    Garhammer J. Weight lifting and training. In: Vaughan CL, editor. Biomechanics of Sport. Boca Raton (FL): CRS Press, 1989: 169–211

    Google Scholar 

  8. 8.

    Enoka RM. The pull in Olympic weightlifting. Med Sci Sports 1979; 11 (2): 131–7

    CAS  PubMed  Google Scholar 

  9. 9.

    Enoka RM. Load- and skill-related changes in segmental contributions to a weightlifting movement. Med Sci Sports Exerc 1988; 20 (2): 178–87

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Stone MH, Pierce KC, Sands WA, et al. Weightlifting: a brief overview. Strength Cond J 2006; 28 (1): 50–66

    Google Scholar 

  11. 11.

    Akkus H. Kinematic analysis of the snatch lift with elite female weightlifters during the 2010 World Weightlifting Championship. J Strength Cond Res 2012; 26 (4): 897–905

    Article  PubMed  Google Scholar 

  12. 12.

    Campos J, Poletaev P, Cuesta A, et al. Kinematical analysis of the snatch in elite male junior weightlifters of different weight categories. J Strength Cond Res 2006; 20 (4): 843–50

    PubMed  Google Scholar 

  13. 13.

    Chiu HT, Wang CH, Cheng KB. The three-dimensional kinematics of a barbell during the snatch of Taiwanese weightlifters. J Strength Cond Res 2010; 24 (6): 1520–6

    Article  PubMed  Google Scholar 

  14. 14.

    Gourgoulis V, Aggelousis N, Mavromatis G, et al. Threedimensional kinematic analysis of the snatch of elite Greek weightlifters. J Sports Sci 2000; 18 (8): 643–52

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Gourgoulis V, Aggeloussis N, Antoniou P, et al. Comparative 3-dimensional kinematic analysis of the snatch technique in elite male and female Greek weightlifters. J Strength Cond Res 2002; 16 (3): 359–66

    PubMed  Google Scholar 

  16. 16.

    Hoover D, Carlson K, Christensen B, et al. Biomechanical analysis of women weightlifters during the snatch. J Strength Cond Res 2006; 20 (3): 627–33

    PubMed  Google Scholar 

  17. 17.

    Häkkinen K, Kauhanen H, Komi P. Biomechanical changes in the Olympic weightlifting technique of the snatch and clean and jerk from submaximal to maximal loads. Scand J Sports Sci 1984; 6: 57–66

    Google Scholar 

  18. 18.

    Winchester JB, Porter JM, McBride JM. Changes in bar path kinematics and kinetics through use of summary feedback in power snatch training. J Strength Cond Res 2009; 23 (2): 444–54

    Article  PubMed  Google Scholar 

  19. 19.

    Cormie P, McCaulley G, Triplett N, et al. Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc 2007; 39 (2): 340–9

    Article  PubMed  Google Scholar 

  20. 20.

    Winchester JB, Erickson TM, Blaak JB, et al. Changes in bar-path kinematics and kinetics after power-clean training. J Strength Cond Res 2005; 19 (1): 177–83

    PubMed  Google Scholar 

  21. 21.

    Drechsler AJ. The weightlifting encyclopedia: a guide to world class performance. Whitestone (NY): A is A Communications, 1998

    Google Scholar 

  22. 22.

    Zernicke RF, Garhammer J, Jobe FW. Human patellartendon rupture. J Bone Joint Surg Am 1977; 59 (2): 179–83

    CAS  PubMed  Google Scholar 

  23. 23.

    González-Badillo JJ, Izquierdo M, Gorostiaga EM. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J Strength Cond Res 2006; 20 (1): 73–81

    PubMed  Google Scholar 

  24. 24.

    Hoffman JR, Cooper J, Wendell M, et al. Comparison of Olympic vs. traditional power lifting training programs in football players. J Strength Cond Res 2004; 18 (1): 129–35

    PubMed  Google Scholar 

  25. 25.

    Poletaev P, Cervera V, Coach W. The Russian approach to planning a weightlifting program. Strength Cond 1995; 17 (1): 20–6

    Article  Google Scholar 

  26. 26.

    Stone MH, Pierce KC, Sands WA, et al. Weightlifting: program design. Strength Cond J 2006; 28 (2): 10–7

    Google Scholar 

  27. 27.

    Garhammer J, Takano B. Training for weightlifting. In: Komi PV, editor. Strength and power in sport. 2nd ed. Oxford: Blackwell Science, 2003: 502–15

    Chapter  Google Scholar 

  28. 28.

    Thrush JT. A simplified approach to program design for elite Junior weightlifters. Strength Cond 1995; 17 (1): 16–8

    Article  Google Scholar 

  29. 29.

    Ebben W, Blackard D. Strength and conditioning practices of National Football League strength and conditioning coaches. J Strength Cond Res 2001; 15 (1): 48–58

    CAS  PubMed  Google Scholar 

  30. 30.

    Kilduff L, Bevan H, Owen N, et al. Optimal loading for peak power output during the hang power clean in professional rugby players. Int J Sports Physiol Perform 2007; 2 (3): 260–9

    PubMed  Google Scholar 

  31. 31.

    Simenz CJ, Dugan CA, Ebben WP. Strength and conditioning practices of National Basketball Association strength and conditioning coaches. J Strength Cond Res 2005; 19 (3): 495–504

    PubMed  Google Scholar 

  32. 32.

    Canavan PK, Garrett GE, Armstrong LE. Kinematic and kinetic relationships between an Olympic-style lift and the vertical jump. J Strength Cond Res 1996; 10 (2): 127–30

    Google Scholar 

  33. 33.

    Carlock JM, Smith SL, Hartman MJ, et al. The relationship between vertical jump power estimates and weightlifting ability: a field-test approach. J Strength Cond Res 2004; 18 (3): 534–9

    PubMed  Google Scholar 

  34. 34.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Part 1: biological basis of maximal power production. Sports Med 2011; 41 (1): 17–38

    Article  PubMed  Google Scholar 

  35. 35.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Part 2: training considerations for improving maximal power production. Sports Med 2011; 41 (2): 125–46

    Article  PubMed  Google Scholar 

  36. 36.

    Garhammer J, Gregor R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J Appl Sports Sci Res 1992; 6 (3): 129–34

    Google Scholar 

  37. 37.

    Hori N, Newton RU, Andrews WA, et al. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J Strength Cond Res 2008; 22 (2): 412–8

    Article  PubMed  Google Scholar 

  38. 38.

    Baker D, Nance S. The relation between running speed and measures of strength and power in professional rugby league players. J Strength Cond Res 1999; 13 (3): 230–5

    Google Scholar 

  39. 39.

    Channell BT, Barfield JP. Effect of Olympic and traditional resistance training on vertical jump improvement in high school boys. J Strength Cond Res 2008; 22: 1522–7

    Article  PubMed  Google Scholar 

  40. 40.

    Tricoli V, Lamas L, Carnevale R, et al. Short-term effects on lower-body functional power development: weightlifting vs. vertical jump training programs. J Strength Cond Res 2005; 19 (2): 433–7

    PubMed  Google Scholar 

  41. 41.

    Pistilli EE, Kaminsky DE, Totten LM, et al. Incorporating one week of planned overreaching into the training program of weightlifters. Strength Cond J 2008; 30 (6): 39–44

    Article  Google Scholar 

  42. 42.

    Fair JD. Olympic weightlifting and the introduction of steroids: a statistical analysis of world championship results, 1948–72. Int J Hist Sport 1988; 5 (1): 96–114

    Article  Google Scholar 

  43. 43.

    Franke W, Berendonk B. Hormonal doping and androgenization of athletes: a secret program of the German Democratic Republic government. Clin Chem 1997; 43 (7): 1262–79

    CAS  PubMed  Google Scholar 

  44. 44.

    Zatsiorsky VM. International perspective: intensity of strength training facts and theory. Russian and Eastern European approach. Strength Cond J 1992; 14 (5): 46–57

    Article  Google Scholar 

  45. 45.

    Takano B. Bulgarian training program: the 1989 NSCA Bulgaria-USSR study tour-the organization of the Bulgarian national weightlifting program. Strength Cond J 1989; 11 (5): 38–9

    Article  Google Scholar 

  46. 46.

    Zatsiorsky VM. Science and practice of strength training. Champaign (IL): Human Kinetics, 1995

    Google Scholar 

  47. 47.

    Wilson JM, Wilson GJ. A practical approach to the taper. Strength Cond J 2008; 30 (2): 10–7

    Article  Google Scholar 

  48. 48.

    Häkkinen K, Kallinen M. Distribution of strength training volume into one or two daily sessions and neuromuscular adaptations in female athletes. Electromyogr Clin Neurophysiol 1994; 34 (2): 117–24

    PubMed  Google Scholar 

  49. 49.

    Hartman MJ, Clark B, Bembens DA, et al. Comparisons between twice-daily and once-daily training sessions in male weight lifters. Int J Sports Physiol Perform 2007; 2 (2): 159–69

    PubMed  Google Scholar 

  50. 50.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 2004; 36 (4): 674–88

    Article  PubMed  Google Scholar 

  51. 51.

    Ratamess NA, Alvar BA, Evetoch TK, et al. Progression models in resistance training for healthy adults-Special communication. Med Sci Sports Exerc 2009; 41 (3): 687–708

    Article  Google Scholar 

  52. 52.

    Coffey VG, Reeder DW, Lancaster GI, et al. Effect of high-frequency resistance exercise on adaptive responses in skeletal muscle. Med Sci Sports Exerc 2007; 39 (12): 2135–44

    Article  PubMed  Google Scholar 

  53. 53.

    Fry AC, Kraemer WJ, Borselen FVAN, et al. Performance decrements with high-intensity resistance exercise overtraining. Med Sci Sports Exerc 1994; 26 (9): 1165–73

    CAS  PubMed  Google Scholar 

  54. 54.

    Fry AC, Kraemer WJ, Van Borselen F, et al. Catecholamine responses to short-term high-intensity resistance exercise overtraining. J Appl Physiol 1994b; 77 (2): 941–6

    CAS  PubMed  Google Scholar 

  55. 55.

    Fry AC, Schilling BK, Weiss LW, et al. beta2-Adrenergic receptor downregulation and performance decrements during high-intensity resistance exercise overtraining. J Appl Physiol 2006; 101 (6): 1664–72

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ratamess N, Kraemer W, Volek J, et al. The effects of amino acid supplementation on muscular performance during resistance training overreaching. J Strength Cond Res 2003; 17 (2): 250–8

    PubMed  Google Scholar 

  57. 57.

    Crewther B, Christian C. Relationships between salivary testosterone and cortisol concentrations and training performance in Olympic weightlifters. J Sports Med Phys Fitness 2010a; 50 (3): 371–5

    CAS  PubMed  Google Scholar 

  58. 58.

    Crewther B, Heke T, Keogh J. The effects of training volume and competition on the salivary cortisol concentrations of Olympic weightlifters. J Strength Cond Res 2011; 25 (1): 10–5

    Article  PubMed  Google Scholar 

  59. 59.

    Fry AC, Kraemer WJ, Stone MH, et al. Endocrine responses to overreaching before and after 1 year of weightlifting. Can J Appl Physiol 1994; 19 (4): 400–10

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Häkkinen K, Pakarinen A, Alén M, et al. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 1988a; 65 (6): 2406–12

    PubMed  Google Scholar 

  61. 61.

    Byrd R, Pierce K, Rielly L, et al. Young weightlifters’ performance across time. Sports Biomech 2003; 2 (1): 133–40

    Article  PubMed  Google Scholar 

  62. 62.

    Faigenbaum AD, Polakowski C. Olympic-style weightlifting, kid style. Strength Cond J 1999; 21 (3): 73–6

    Article  Google Scholar 

  63. 63.

    Hamill BP. Relative safety of weightlifting and weight training. J Strength Cond Res 1994; 8 (1): 53–7

    Google Scholar 

  64. 64.

    Siahkouhian M, Kordi H. The effects of training volume on the performance of young elite weightlifters. J Hum Kinet 2010; 26 (1): 137–45

    Google Scholar 

  65. 65.

    Pearson SJ, Young A, Macaluso A, et al. Muscle function in elite master weightlifters. Med Sci Sports Exerc 2002; 34 (7): 1199–206

    Article  PubMed  Google Scholar 

  66. 66.

    Meltzer DE. Age dependence of Olympic weightlifting ability. Med Sci Sports Exerc 1994; 26 (8): 1053–67

    CAS  PubMed  Google Scholar 

  67. 67.

    Thé DJ, Ploutz-Snyder L. Age, body mass, and gender as predictors of masters olympic weightlifting performance. Med Sci Sports Exerc 2003; 35 (7): 1216–24

    Article  PubMed  Google Scholar 

  68. 68.

    Anton MM, Spirduso WW, Tanaka H. Age-related declines in anaerobic muscular performance: weightlifting and powerlifting. Med Sci Sports Exerc 2004; 36 (1): 143–7

    Article  PubMed  Google Scholar 

  69. 69.

    Jozsi AC, Dupont-Versteegden EE, Taylor-Jones JM, et al. Aged human muscle demonstrates an altered gene expression profile consistent with an impaired response to exercise. Mech Ageing Dev 2000; 120 (1–3): 45–56

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Kumar V, Selby A, Rankin D, et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 2009; 587 (1): 211–7

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Newton R, Hakkinen K, Hakkinen A, et al. Mixedmethods resistance training increases power and strength of young and older men. Med Sci Sports Exerc 2002; 34 (8): 1367–75

    Article  PubMed  Google Scholar 

  72. 72.

    Harris GR, Stone MH, O’Bryant HS, et al. Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res 2000; 14 (1): 14–20

    Google Scholar 

  73. 73.

    Izquierdo M, Häkkinen K, Gonzalez-Badillo JJ, et al. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol 2002; 87 (3): 264–71

    Article  PubMed  Google Scholar 

  74. 74.

    Kaneko M, Fuchimoto T, Toji H, et al. Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scand J Sports Sci 1983; 5 (2): 50–5

    Google Scholar 

  75. 75.

    Newton RU, Kraemer W, Häkkinen K, et al. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech 1996; 12: 31–43

    Google Scholar 

  76. 76.

    Newton RU, Murphy AJ, Humphries BJ, et al. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol 1997; 75 (4): 333–42

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Stone MH, O’Bryant HS, McCoy L, et al. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J Strength Cond Res 2003a; 17 (1): 140–7

    PubMed  Google Scholar 

  78. 78.

    Markovic G, Jaric S. Positive and negative loading and mechanical output in maximum vertical jumping. Med Sci Sports Exerc 2007; 39 (10): 1757–64

    Article  PubMed  Google Scholar 

  79. 79.

    Nuzzo JL, McBride JM, Dayne AM, et al. Testing of the maximal dynamic output hypothesis in trained and untrained subjects. J Strength Cond Res 2010; 24 (5): 1269–76

    Article  PubMed  Google Scholar 

  80. 80.

    Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during jump squats in power-trained athletes. J Strength Cond Res 2001a; 15 (1): 92–7

    CAS  PubMed  Google Scholar 

  81. 81.

    Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. J Strength Cond Res 2001b; 15 (1): 20–4

    CAS  PubMed  Google Scholar 

  82. 82.

    Delecluse C, Van Coppenolle H, Willems E, et al. Influence of high-resistance and high-velocity training on sprint performance. Med Sci Sports Exerc 1995; 27 (8): 1203–9

    CAS  PubMed  Google Scholar 

  83. 83.

    Garhammer J, McLaughlin T. Power output as a function of load variation in Olympic and power lifting [abstract]. J Biomech 1980; 13 (2): 198

    Article  Google Scholar 

  84. 84.

    McBride JM, Triplett-McBride T, Davie A, et al. The effect of heavy-vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res 2002; 16 (1): 75–82

    PubMed  Google Scholar 

  85. 85.

    Wilson G, Newton R, Murphy A, et al. The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc 1993; 25 (11): 1279–86

    CAS  PubMed  Google Scholar 

  86. 86.

    Kawamori N, Crum AJ, Blumert PA, et al. Influence of different relative intensities on power output during the hang power clean: identification of the optimal load. J Strength Cond Res 2005; 19 (3): 698–708

    PubMed  Google Scholar 

  87. 87.

    Thomas G, Kraemer W, Spiering B, et al. Maximal power at different percentages of one repetition maximum: influence of resistance and gender. J Strength Cond Res 2007; 21 (2): 336–42

    PubMed  Google Scholar 

  88. 88.

    Haff GG, Stone M, O’Bryant HS, et al. Force-time dependent characteristics of dynamic and isometric muscle actions. J Strength Cond Res 1997; 11 (4): 269–72

    Google Scholar 

  89. 89.

    Hoffman JR, Ratamess NA, Klatt M, et al. Comparison between different off-season resistance training programs in Division III American college football players. J Strength Cond Res 2009; 23 (1): 11–9

    Article  PubMed  Google Scholar 

  90. 90.

    Hori N, Newton RU, Nosaka K, et al. Weightlifting exercises enhance athletic performance that requires high-load speed strength. Strength Cond J 2005; 27 (4): 50–5

    Article  Google Scholar 

  91. 91.

    Scala D, McMillan J, Blessing D, et al. Metabolic cost of a preparatory phase of training in weight lifting: a practical observation. J Strength Cond Res 1987; 1 (3): 48–52

    Google Scholar 

  92. 92.

    Wilmore J, Parr R, Ward P, et al. Energy cost of circuit weight training. Med Sci Sports 1978; 10 (2): 75–8

    CAS  PubMed  Google Scholar 

  93. 93.

    Burke LM, Gollan RA, Read RS. Dietary intakes and food use of groups of elite Australian male athletes. Int J Sport Nutr 1991; 1 (4): 378–94

    CAS  PubMed  Google Scholar 

  94. 94.

    Burke LM, Read R. Food use and nutritional practices of elite Olympic weightlifters. In: Truswell AS, Wahlqvist ML, editors. Food habits in Australia. Melbourne (VIC): William Heinemann, 1988: 112–21

    Google Scholar 

  95. 95.

    Chen JD, Wang JF, Li KJ, et al. Nutritional problems and measures in elite and amateur athletes. Am J Clin Nutr 1989; 49 (5): 1084–9

    CAS  PubMed  Google Scholar 

  96. 96.

    Hassapidou M. Dietary assessment of five male sports teams in Greece. Nutri Food Sci 2001; 31 (1): 31–5

    Article  Google Scholar 

  97. 97.

    Marsit JL, Conley MS, Stone MH, et al. Effects of ascorbic acid on serum cortisol and the testosterone: cortisol ratio in junior elite weightlifters. J Strength Cond Res 1998; 12 (3): 179–84

    Google Scholar 

  98. 98.

    Rogozkin VA. Sports specific nutrition: weightlifting and power events. In: Maughan R, editor. Nutrition in sport. Oxford: Wiley-Blackwell, 2000: 621–31

    Google Scholar 

  99. 99.

    Sugiura K, Suzuki I, Kobayashi K. Nutritional intake of elite Japanese track-and-field athletes. Int J Sport Nutr 1999; 9 (2): 202–12

    CAS  PubMed  Google Scholar 

  100. 100.

    Ronsen O, Sundgot-Borgen J, Maehlum S. Supplement use and nutritional habits in Norwegian elite athletes. Scand J Med Sci Sports 1999; 9 (1): 28–35

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Maughan RJ, Burke L. Sports nutrition: olympic handbook of sports medicine. Malden (MA): Wiley-Blackwell, 2002

    Book  Google Scholar 

  102. 102.

    Grandjean AC. Macronutrient intake of US athletes compared with the general population and recommendations made for athletes. Am J Clin Nutr 1989; 49 (5): 1070–6

    CAS  PubMed  Google Scholar 

  103. 103.

    Rodriguez NR, DiMarco NM, Langley S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc 2009; 109 (3): 509–27

    Article  PubMed  CAS  Google Scholar 

  104. 104.

    Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 2002; 102 (11): 1621–30

    Article  PubMed  Google Scholar 

  105. 105.

    Van Erp-Baart A, Saris W, Binkhorst R, et al. Nationwide survey on nutritional habits in elite athletes. Int J Sports Med 1989; 10: 53–16

    Article  Google Scholar 

  106. 106.

    Rodriguez N, Di Marco N, Langley S. American Dietetic Association; Dietitians of Canada; American College of Sports Medicine. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc 2009; 41 (3): 709–31

    Article  PubMed  CAS  Google Scholar 

  107. 107.

    Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med 2007b; 37 (10): 907–21

    Article  PubMed  Google Scholar 

  108. 108.

    Cheuvront S, Carter III R, Castellani J, et al. Hypohydration impairs endurance exercise performance in temperate but not cold air. J Appl Physiol 2005; 99 (5): 1972–6

    Article  PubMed  Google Scholar 

  109. 109.

    Sawka M. Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc 1992; 24 (6): 657–70

    CAS  PubMed  Google Scholar 

  110. 110.

    von Duvillard S, Braun W, Markofski M, et al. Fluids and hydration in prolonged endurance performance. Nutrition 2004; 20 (7–8): 651–6

    Article  CAS  Google Scholar 

  111. 111.

    Schoffstall JE, David Branch J, Leutholtz BC, et al. Effects of dehydration and rehydration on the one-repetition maximum bench press of weight-trained males. J Strength Cond Res 2001; 15 (1): 102–8

    CAS  PubMed  Google Scholar 

  112. 112.

    Viitasalo JT, Kyrolainen H, Bosco C, et al. Effects of rapid weight reduction on force production and vertical jumping height. Int J Sports Med 1987; 8 (4): 281–5

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Webster S, Rutt R, Weltman A. Physiological effects of a weight loss regimen practiced by college wrestlers. Med Sci Sports Exerc 1990; 22 (2): 229–34

    CAS  PubMed  Google Scholar 

  114. 114.

    Torranin C, Smith DP, Byrd RJ. The effect of acute thermal dehydration and rapid rehydration on isometric and istonic endurance. J Sports Med Phys Fitness 1979; 19 (1): 1–9

    CAS  PubMed  Google Scholar 

  115. 115.

    Judelson DA, Maresh CM, Farrell MJ, et al. Effect of hydration state on strength, power, and resistance exercise performance. Med Sci Sports Exerc 2007a; 39 (10): 1817–24

    Article  PubMed  Google Scholar 

  116. 116.

    Montain SJ, Smith SA, Mattot RP, et al. Hypohydration effects on skeletal muscle performance and metabolism: a 31P-MRS study. J Appl Physiol 1998; 84 (6): 1889–94

    CAS  PubMed  Google Scholar 

  117. 117.

    Greiwe JS, Staffey KS, Melrose DR, et al. Effects of dehydration on isometric muscular strength and endurance. Med Sci Sports Exerc 1998; 30 (2): 284–8

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Fogelholm GM, Koskinen R, Laakso J, et al. Gradual and rapid weight loss: effects on nutrition and performance in male athletes. Med Sci Sports Exerc 1993; 25 (3): 371–7

    CAS  PubMed  Google Scholar 

  119. 119.

    Gutiérrez A, Mesa JLM, Ruiz JR, et al. Sauna-induced rapid weight loss decreases explosive power in women but not in men. Int J Sports Med 2003; 24 (7): 518–23

    Article  PubMed  Google Scholar 

  120. 120.

    Carter JEL, Lindsay JE. Physical structure of Olympic athletes: part II. In: Jokl E, Hebbelinck M, editors. Kinathropometry of Olympic athletes. Basel: Karger, 1984

    Google Scholar 

  121. 121.

    Fahey TD, Akka L, Rolph R. Body composition and VO2max of exceptional weight-trained athletes. J Appl Physiol 1975; 39 (4): 559–61

    CAS  PubMed  Google Scholar 

  122. 122.

    Fry AC, Ciroslan D, Fry MD, et al. Anthropometric and performance variables discriminating elite American Junior men weightlifters. J Strength Cond Res 2006; 20 (4): 861–6

    PubMed  Google Scholar 

  123. 123.

    Katch VL, Katch FI, Moffatt R, et al. Muscular development and lean body weight in body builders and weight lifters. Med Sci Sports Exerc 1980; 12 (5): 340–4

    CAS  PubMed  Google Scholar 

  124. 124.

    Orvanová E. Somatotypes of weight lifters. J Sports Sci 1990; 8 (2): 119–37

    Article  PubMed  Google Scholar 

  125. 125.

    Tittel K, Wutscherk H. Anthropometric factors. In: Komi PV, editor. Strength and power in sport. 2nd ed. Oxford: Blackwell Science, 1992: 180–96

    Google Scholar 

  126. 126.

    Kanehisa H, Fukunaga T. Profiles of musculoskeletal development in limbs of college Olympic weightlifters and wrestlers. Eur J Appl Physiol 1999; 79 (5): 414–20

    CAS  Article  Google Scholar 

  127. 127.

    Thorland W, Johnson G, Fagot T, et al. Body composition and somatotype characteristics of Junior Olympic athletes. Med Sci Sports Exerc 1981; 13 (5): 332–8

    CAS  PubMed  Google Scholar 

  128. 128.

    Faber M, Spinnler-Benade A, Daubitzer A. Dietary intake, anthropometric measurements and plasma lipid levels in throwing field athletes. Int J Sports Med 1990; 11: 140–5

    CAS  Article  PubMed  Google Scholar 

  129. 129.

    Keogh JWL, Hume PA, Pearson SN, et al. Anthropometric dimensions of male powerlifters of varying body mass. J Sports Sci 2007; 25 (12): 1365–76

    Article  PubMed  Google Scholar 

  130. 130.

    Kidd D, Winter E. Some anthropometric characteristics of the National Junior hammer squad. Br J Sports Med 1983; 17 (4): 152–3

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Stone MH, Sanborn K, O’Bryant HS, et al. Maximum strength-power-performance relationships in collegiate throwers. J Strength Cond Res 2003; 17 (4): 739–45

    PubMed  Google Scholar 

  132. 132.

    Haff GG, Jackson JR, Kawamori N, et al. Force-time curve characteristics and hormonal alterations during an eleven-week training period in elite women weightlifters. J Strength Cond Res 2008; 22 (2): 433–46

    Article  PubMed  Google Scholar 

  133. 133.

    Stoessel L, Stone MH, Keith R, et al. Selected physiological, psychological and performance characteristics of National-caliber United States women weightlifters. J Strength Cond Res 1991; 5 (2): 87–95

    Google Scholar 

  134. 134.

    Ford LE, Detterline AJ, Ho KK, et al. Gender-and height-related limits of muscle strength in world weightlifting champions. J Appl Physiol 2000; 89 (3): 1061–4

    CAS  PubMed  Google Scholar 

  135. 135.

    Frontera WR, Hughes VA, Lutz KJ, et al. A cross-sectional study of muscle strength and mass in 45-to 78-yr-old men and women. J Appl Physiol 1991; 71 (2): 644–50

    CAS  PubMed  Google Scholar 

  136. 136.

    Marchocka M, Smuk E. Analysis of body build of senior weightlifters with particular regard for proportions. Biology of Sport 1984; 1: 55–71

    Google Scholar 

  137. 137.

    Maughan R, Watson J, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol 1983; 338 (1): 37–49

    CAS  PubMed  Google Scholar 

  138. 138.

    Maughan R, Watson J, Weir J. Muscle strength and cross-sectional area in man: a comparison of strength-trained and untrained subjects. Br J Sports Med 1984; 18 (3): 149–57

    CAS  Article  PubMed  Google Scholar 

  139. 139.

    Miller A, MacDougall J, Tarnopolsky M, et al. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 1993; 66 (3): 254–62

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Schantz P, Randall-Fox E, Hutchison W, et al. Muscle fibre type distribution, muscle cross sectional area and maximal voluntary strength in humans. Acta Physiol Scand 1983; 117 (2): 219–26

    CAS  Article  PubMed  Google Scholar 

  141. 141.

    Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol 1976; 40 (1): 12–6

    CAS  PubMed  Google Scholar 

  142. 142.

    Clarkson PM, Kroll W, McBride TC. Maximal isometric strength and fiber type composition in power and endurance athletes. Eur J Appl Physiol 1980; 44 (1): 35–42

    CAS  Article  Google Scholar 

  143. 143.

    Fry AC, Schilling BK, Staron RS, et al. Muscle fiber characteristics and performance correlates of male Olympicstyle weightlifters. J Strength Cond Res 2003; 17 (4): 746–54

    PubMed  Google Scholar 

  144. 144.

    Gollnick PD, Armstrong RB, Saubert CW, et al. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 1972; 33 (3): 312–9

    CAS  PubMed  Google Scholar 

  145. 145.

    Häkkinen K, Komi PV, Alén M, et al. EMG, muscle fibre and force production characteristics during a 1 year training period in elite weight-lifters. Eur J Appl Physiol 1987; 56 (4): 419–27

    Article  Google Scholar 

  146. 146.

    Prince FP, Hikida RS, Hagerman FC. Human muscle fiber types in power lifters, distance runners and untrained subjects. Pflügers Arch 1976; 363 (1): 19–26

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Tesch PA, Thorsson A, Essen-Gustavsson B. Enzyme activities of FT and ST muscle fibers in heavy-resistance trained athletes. J Appl Physiol 1989; 67 (1): 83–7

    CAS  PubMed  Google Scholar 

  148. 148.

    Tesch PA, Thorsson A, Kaiser P. Muscle capillary supply and fiber type characteristics in weight and power lifters. J Appl Physiol 1984; 56 (1): 35–8

    CAS  PubMed  Google Scholar 

  149. 149.

    Ingjer F. Capillary supply and mitochondrial content of different skeletal muscle fiber types in untrained and endurance-trained men. A histochemical and ultrastructural study. Eur J Appl Physiol Occup Physiol 1979; 40 (3): 197–209

    CAS  Article  PubMed  Google Scholar 

  150. 150.

    Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 1989; 257 (4) 567–72

    Google Scholar 

  151. 151.

    Bottinelli R, Pellegrino M, Canepari M, et al. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J Electromyogr Kinesiol 1999; 9 (2): 87–95

    CAS  Article  PubMed  Google Scholar 

  152. 152.

    Malisoux L, Francaux M, Nielens H, et al. Stretch- shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 2006; 100 (3): 771–9

    Article  PubMed  Google Scholar 

  153. 153.

    Widrick JJ, Stelzer JE, Shoepe TC, et al. Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Intergr Comp Physiol 2002; 283 (2): 408–16

    Google Scholar 

  154. 154.

    Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 1994; 76 (3): 1247–55

    CAS  PubMed  Google Scholar 

  155. 155.

    Staron RS, Malicky ES, Leonardi MJ, et al. Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol 1990; 60 (1): 71–9

    CAS  Article  Google Scholar 

  156. 156.

    Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 2004; 34 (10): 663–9

    Article  PubMed  Google Scholar 

  157. 157.

    Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistancetraining regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 2002; 88 (1): 50–60

    Article  PubMed  Google Scholar 

  158. 158.

    Green H, Goreham C, Ouyang J, et al. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol 1999; 276 (2): 591–6

    Google Scholar 

  159. 159.

    Harber MP, Gallagher PM, Creer AR, et al. Single muscle fiber contractile properties during a competitive season in male runners. Am J Physiol Regul Intergr Comp Physiol 2004; 287 (5): 1124–31

    Article  CAS  Google Scholar 

  160. 160.

    Neary JP, Martin TP, Quinney HA. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med Sci Sports Exerc 2003; 35 (11): 1875–81

    Article  PubMed  Google Scholar 

  161. 161.

    Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 2001; 31 (15): 1063–82

    CAS  Article  PubMed  Google Scholar 

  162. 162.

    Trappe S, Costill D, Thomas R. Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc 2001; 33 (1): 48–56

    CAS  PubMed  Google Scholar 

  163. 163.

    Trappe S, Harber M, Creer A, et al. Single muscle fiber adaptations with marathon training. J Appl Physiol 2006; 101 (3): 721–7

    Article  PubMed  Google Scholar 

  164. 164.

    Haff G, Carlock J, Hartman M, et al. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters. J Strength Cond Res 2005; 19 (4): 741–8

    PubMed  Google Scholar 

  165. 165.

    Hakkinen K, Komi PV, Kauhanen H. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises. Int J Sports Med 1986; 7 (3): 144–51

    CAS  Article  PubMed  Google Scholar 

  166. 166.

    Kauhanen H, Garhammer J, Häkkinen K. Relationship between power output, body size and snatch performance in elite weightlifters. In: Avela J, Komi PM, Komulainen J, editors. Proceedings of the Fifth Annual Congress of the European College of Sport Sciences; 2000 Jul 19–23; Jyvaskala: 383

  167. 167.

    Schmidtbleicher D. Training for power events. In: Komi PV, editor. Strength and power in sport. Boston: Blackwell Scientific Publications, 1992: 381–95

    Google Scholar 

  168. 168.

    Stone MH, Sands WA, Pierce KC, et al. Relationship of maximum strength to weightlifting performance. Med Sci Sports Exerc 2005; 37 (6): 1037–43

    PubMed  Google Scholar 

  169. 169.

    Aagaard P, Simonsen EB, Andersen JL, et al. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 2002; 93 (4): 1318–26

    PubMed  Google Scholar 

  170. 170.

    Thorstensson A, Karlsson J, Viitasalo JHT, et al. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand 1976; 98 (2): 232–6

    CAS  Article  PubMed  Google Scholar 

  171. 171.

    Zatsiorsky VM. Biomechanics of strength and strength training. In: Komi PV, editor. Strength and power in sport. 2nd ed. Oxford: Blackwell Science, 2003: 439–87

    Chapter  Google Scholar 

  172. 172.

    Gourgoulis V, Aggeloussis N, Garas A, et al. Unsuccessful vs. successful performance in snatch lifts: a kinematic approach. J Strength Cond Res 2009; 23 (2): 486–94

    Article  PubMed  Google Scholar 

  173. 173.

    Blazevich AJ, Horne S, Cannavan D, et al. Effect of contraction mode of slow speed resistance training on the maximum rate of force development in the human quadriceps. Muscle Nerve 2008; 38 (3): 1133–46

    Article  PubMed  Google Scholar 

  174. 174.

    Stone M, Sands W, Carlock J, et al. The importance of isometric maximum strength and peak rate-of-force development in sprint cycling. J Strength Cond Res 2004; 18 (4): 878–84

    PubMed  Google Scholar 

  175. 175.

    Moss BM, Refsnes PE, Abildgaard A, et al. Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur J Appl Physiol Occup Physiol 1997; 75 (3): 193–9

    CAS  Article  PubMed  Google Scholar 

  176. 176.

    Häkkinen K, Pakarinen A, Alén M, et al. Neuromuscular and hormonal responses in elite athletes to two successive strength training sessions in one day. Eur J Appl Physiol 1988; 57 (2): 133–9

    Article  Google Scholar 

  177. 177.

    McGuigan MR, Winchester JB. The relationship between isometric and dynamic strength in college football players. J Sports Sci Med 2008; 7: 101–5

    Google Scholar 

  178. 178.

    Nuzzo JL, McBride JM, Cormie P, et al. Relationship between countermovement jump performance and multi-joint isometric and dynamic tests of strength. J Strength Cond Res 2008; 22 (3): 699–707

    Article  PubMed  Google Scholar 

  179. 179.

    Stone MH, Sands WA, Pierce KC, et al. Power and power potentiation among strength-power athletes: preliminary study. Int J Sports Physiol Perform 2008; 3 (1): 55–67

    PubMed  Google Scholar 

  180. 180.

    Ewing J, Wolfe D, Rogers M, et al. Effects of velocity of isokinetic training on strength, power, and quadriceps muscle fibre characteristics. Eur J Appl Physiol Occup Physiol 1990; 61 (1): 159–62

    Article  PubMed  Google Scholar 

  181. 181.

    Nardone A, Romano C, Schieppati M. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol 1989; 409 (1): 451–71

    CAS  PubMed  Google Scholar 

  182. 182.

    McBride JM, Triplett-Mcbride T, Davie A, et al. A comparison of strength and power characteristics between power lifters, Olympic lifters, and sprinters. J Strength Cond Res 1999; 13 (1): 58–66

    Google Scholar 

  183. 183.

    Hoff J, Almåsbakk B. The effects of maximum strength training on throwing velocity and muscle strength in female team-handball players. J Strength Cond Res 1995; 9 (4): 255–8

    Google Scholar 

  184. 184.

    Bai X, Wang H, Xi’an Zhang WJ, et al., editors. Threedimension kinematics simulation and biomechanics analysis of snatch technique. Proceedings of 1st joint international pre-Olympic conference of sports science & sports engineering. Vol. 1. Nanjing: Computer Science in Sports; 2008 Aug 5–7: 291–6

  185. 185.

    Sinclair RG. Normalizing the performances of athletes in Olympic weightlifting. Can J Appl Sport Sci 1985; 10 (2): 94–8

    CAS  PubMed  Google Scholar 

  186. 186.

    Batterham AM, George KP. Allometric modeling does not determine a dimensionless power function ratio for maximal muscular function. J Appl Physiol 1997; 83 (6): 2158–66

    CAS  PubMed  Google Scholar 

  187. 187.

    Kauhanen H, Komi PV, Häkkinen K. Standardization and validation of the body weight adjustment regression equations in Olympic weightlifting. J Strength Cond Res 2002; 16 (1): 58–74

    PubMed  Google Scholar 

  188. 188.

    Siff M. Biomathematical relationship between strength and body mass. SAJ Res Sport Phys Educ Recreation 1988; 11 (1): 81–92

    Google Scholar 

  189. 189.

    Kanehisa H, Ikegawa S, Fukunaga T. Comparison of muscle cross-sectional area and strength between untrained women and men. Eur J Appl Physiol Occup Physiol 1994; 68 (2): 148–54

    CAS  Article  PubMed  Google Scholar 

  190. 190.

    Komi PV, Karlsson J. Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Physiol Scand 1978; 103 (2): 210–8

    CAS  Article  PubMed  Google Scholar 

  191. 191.

    Mayhew J, Salm P. Gender differences in anaerobic power tests. Eur J Appl Physiol Occup Physiol 1990; 60 (2): 133–8

    CAS  Article  PubMed  Google Scholar 

  192. 192.

    Petrella JK, Kim J, Tuggle SC, et al. Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol 2005; 98 (1): 211–20

    Article  PubMed  Google Scholar 

  193. 193.

    Baker AB, Tang YQ. Aging performance for Masters records in athletics, swimming, rowing, cycling, triathlon, and weightlifting. Exp Aging Res 2010; 36 (4): 453–77

    Article  PubMed  Google Scholar 

  194. 194.

    Meltzer DE. Body-mass dependence of age-related deterioration in human muscular function. J Appl Physiol 1996; 80 (4): 1149–55

    CAS  PubMed  Google Scholar 

  195. 195.

    Leong B, Kamen G, Patten C, et al. Maximal motor unit discharge rates in the quadriceps muscles of older weight lifters. Med Sci Sports Exerc 1999; 31 (11): 1638–44

    CAS  Article  PubMed  Google Scholar 

  196. 196.

    Brown WF, Strong MJ, Snow R. Methods for estimating numbers of motor units in biceps brachialis muscles and losses of motor units with aging. Muscle Nerve 1988; 11 (5): 423–32

    CAS  Article  PubMed  Google Scholar 

  197. 197.

    Luff AR. Age-associated changes in the innervation of muscle fibers and changes in the mechanical properties of motor units. Ann N Y Acad Sci 1998; 854 (1): 92–101

    CAS  Article  PubMed  Google Scholar 

  198. 198.

    Larsson L, Sjödin B, Karlsson J. Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiol Scand 1978; 103 (1): 31–9

    CAS  Article  PubMed  Google Scholar 

  199. 199.

    Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 1995; 50: 11–6

    PubMed  Google Scholar 

  200. 200.

    Lexell J, Henriksson-Larsén K, Winblad B, et al. Distribution of different fiber types in human skeletal muscles: Effects of aging studied in whole muscle cross sections. Muscle Nerve 1983; 6 (8): 588–95

    CAS  Article  PubMed  Google Scholar 

  201. 201.

    Krivickas LS, Suh D, Wilkins J, et al. Age-and gender-related differences in maximum shortening velocity of skeletal muscle fibers. Am J Phys Med Rehabil 2001; 80 (6): 447–55

    CAS  Article  PubMed  Google Scholar 

  202. 202.

    Trappe S, Gallagher P, Harber M, et al. Single muscle fibre contractile properties in young and old men and women. J Physiol 2003; 552 (1): 47–58

    CAS  Article  PubMed  Google Scholar 

  203. 203.

    Calhoon G, Fry AC. Injury rates and profiles of elite competitive weightlifters. J Athl Train 1999; 34 (3): 232–8

    CAS  PubMed  Google Scholar 

  204. 204.

    Karlsson M, Vergnaud P, Delmas P, et al. Indicators of bone formation in weight lifters. Calcif Tissue Int 1995a; 56 (3): 177–80

    CAS  Article  PubMed  Google Scholar 

  205. 205.

    Conroy BP, Kraemer WJ, Maresh CM, et al. Bone mineral density in elite junior Olympic weightlifters. Med Sci Sports Exerc 1993; 25 (10): 1103–9

    CAS  PubMed  Google Scholar 

  206. 206.

    Dinç H, Savci G, Demirci A, et al. Quantitative computed tomography for measuring bone mineral density in athletes. Calcif Tissue Int 1996; 58 (6): 398–401

    Article  PubMed  Google Scholar 

  207. 207.

    Heinonen A, Sievänen H, Kannus P, et al. Site-specific skeletal response to long-term weight training seems to be attributable to principal loading modality: a pQCT study of female weightlifters. Calcif Tissue Int 2002; 70 (6): 469–74

    CAS  Article  PubMed  Google Scholar 

  208. 208.

    Karlsson M, Johnell O, Obrant K. Bone mineral density in weight lifters. Calcif Tissue Int 1993; 52 (3): 212–5

    CAS  Article  PubMed  Google Scholar 

  209. 209.

    Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int 1995b; 57 (5): 325–8

    Article  PubMed  Google Scholar 

  210. 210.

    Haykowsky M, Dressendorfer R, Taylor D, et al. Resistance training and cardiac hypertrophy: unravelling the training effect. Sports Med 2002; 32 (13): 837–49

    Article  PubMed  Google Scholar 

  211. 211.

    Richey P, Brown S. Pathological versus physiological left ventricular hypertrophy: a review. J Sports Sci 1998; 16 (2): 129–41

    CAS  Article  PubMed  Google Scholar 

  212. 212.

    Grossman W. Cardiac hypertrophy: Useful adaptation or pathologic process? Am J Med 1980; 69 (4): 576–84

    CAS  Article  PubMed  Google Scholar 

  213. 213.

    Abinader E, Sharif D, Sagiv M, et al. The effects of isometric stress on left ventricular filling in athletes with isometric or isotonic training compared to hypertensive and normal controls. Eur Heart J 1996; 17 (3): 457–61

    CAS  Article  PubMed  Google Scholar 

  214. 214.

    Adler Y, Fisman EZ, Koren-Morag N, et al. Left ventricular diastolic function in trained male weightlifters at rest and during isometric exercise. Am J Cardiol 2008; 102 (1): 97–101

    Article  PubMed  Google Scholar 

  215. 215.

    Brown S, Thompson W. Standardization indices of cardiac hypertrophy in weight lifters. J Sports Sci 1987; 5 (2): 147–53

    CAS  Article  PubMed  Google Scholar 

  216. 216.

    Fleck S. Cardiovascular adaptations to resistance training. Med Sci Sports Exerc 1988; 20 (5 Suppl.): 146–51

    Google Scholar 

  217. 217.

    Fleck SJ, Henke C, Wilson W. Cardiac MRI of elite junior Olympic weight lifters. Int J Sports Med 1989; 10 (5): 329–33

    CAS  Article  PubMed  Google Scholar 

  218. 218.

    George KP, Batterham AM, Jones B. Echocardiographic evidence of concentric left ventricular enlargement in female weight lifters. Eur J Appl Physiol Occup Physiol 1998a; 79 (1): 88–92

    CAS  Article  PubMed  Google Scholar 

  219. 219.

    George KP, Batterham AM, Jones B. The impact of scalar variable and process on athlete-control comparisons of cardiac dimensions. Med Sci Sports Exerc 1998b; 30 (6): 824–30

    CAS  Article  PubMed  Google Scholar 

  220. 220.

    Gibbs R. Performance criteria, telemetered heart rate and enzyme studies in Olympic weight lifting. Br J Sports Med 1977; 11 (2): 88–93

    CAS  Article  PubMed  Google Scholar 

  221. 221.

    Lalande S, Baldi J. Left ventricular mass in elite olympic weight lifters. Am J Cardiol 2007; 100 (7): 1177–80

    Article  PubMed  Google Scholar 

  222. 222.

    Longhurst JC, Kelly AR, Gonyea WJ, et al. Echocardiographic left ventricular masses in distance runners and weight lifters. J Appl Physiol 1980; 48 (1): 154–62

    CAS  PubMed  Google Scholar 

  223. 223.

    Pearson AC, Schiff M, Mrosek D, et al. Left ventricular diastolic function in weight lifters. Am J Cardiol 1986; 58 (13): 1254–9

    CAS  Article  PubMed  Google Scholar 

  224. 224.

    Pelliccia A, Spataro A, Caselli G, et al. Absence of left ventricular wall thickening in athletes engaged in intense power training. Am J Cardiol 1993; 72 (14): 1048–54

    CAS  Article  PubMed  Google Scholar 

  225. 225.

    Pluim BM, Zwinderman AH, van der Laarse A, et al. The athlete’s heart: A meta-analysis of cardiac structure and function. Am Heart Assoc 2000; 101: 336–44

    CAS  Google Scholar 

  226. 226.

    Snoeckx L, Abeling H, Lambregts J, et al. Echocardiographic dimensions in athletes in relation to their training programs. Med Sci Sports Exerc 1982; 14 (6): 428–34

    CAS  Article  PubMed  Google Scholar 

  227. 227.

    Stone MH, Wilson GD, Blessing D, et al. Cardiovascular responses to short-term Olympic style weight-training in young men. Can J Appl Sport Sci 1983; 8 (3): 134–9

    CAS  PubMed  Google Scholar 

  228. 228.

    Fleck SJ, Pattany PM, Stone MH, et al. Magnetic resonance imaging determination of left ventricular mass: junior Olympic weightlifters. Med Sci Sports Exerc 1993; 25 (4): 522–7

    CAS  PubMed  Google Scholar 

  229. 229.

    Shapiro L. Physiological left ventricular hypertrophy. Br J Sports Med 1984; 52 (2): 130–5

    CAS  Google Scholar 

  230. 230.

    Farrell PA, Maksud MG, Pollock ML, et al. A comparison of plasma cholesterol, triglycerides. and high density lipoprotein-cholesterol in speed skaters, weightlifters and non-athletes. Eur J Appl Physiol 1982; 48 (1): 77–82

    CAS  Article  Google Scholar 

  231. 231.

    MacFarlane N, Northridge DB, Wright AR, et al. A comparative study of left ventricular structure and function in elite athletes. Br J Sports Med 1991; 25 (1): 45–8

    CAS  Article  PubMed  Google Scholar 

  232. 232.

    Nakao M, Inoue Y, Murakami H. Longitudinal study of the effect of high intensity weight training on aerobic capacity. Eur J Appl Physiol 1995; 70 (1): 20–5

    CAS  Article  Google Scholar 

  233. 233.

    Jost J, Weiss M, Weicker H. Comparison of sympathoadrenergic regulation at rest and of the adrenoceptor system in swimmers, long-distance runners, weight lifters, wrestlers and untrained men. Eur J Appl Physiol Occup Physiol 1989; 58 (6): 596–604

    CAS  Article  PubMed  Google Scholar 

  234. 234.

    Armstrong L, Balady GJ, Berry ML, et al. Pre-exercise evaluations. In: Whaley MH, Brubaker PH, Otto RM, editors. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2006: 39–54

    Google Scholar 

  235. 235.

    Cardinale M, Stone MH. Is testosterone influencing explosive performance? J Strength Cond Res 2006; 20 (1): 103–7

    PubMed  Google Scholar 

  236. 236.

    Vingren J, Kraemer W, Ratamess N, et al. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med 2010; 40 (12): 1037–53

    Article  PubMed  Google Scholar 

  237. 237.

    Blumert PA, Crum AJ, Ernsting M, et al. The acute effects of twenty-four hours of sleep loss on the performance of National-caliber male collegiate weightlifters. J Strength Cond Res 2007; 21 (4): 1146–54

    PubMed  Google Scholar 

  238. 238.

    Busso T, Häkkinen K, Pakarinen A, et al. Hormonal adaptations and modelled responses in elite weightlifters during 6 weeks of training. Eur J Appl Physiol Occup Physiol 1992; 64 (4): 381–6

    CAS  Article  PubMed  Google Scholar 

  239. 239.

    Fry AC, Kraemer WJ, Stone MH, et al. Relationships between serum testosterone, cortisol, and weightlifting performance. J Strength Cond Res 2000; 14 (3): 338–43

    Article  Google Scholar 

  240. 240.

    Izquierdo M, Ibáñez J, Häkkinen K, et al. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sports Sci 2004; 22 (5): 465–78

    Article  PubMed  Google Scholar 

  241. 241.

    Kraemer WJ, Fry AC, Warren BJ, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med 1992; 13 (2): 103–9

    CAS  Article  PubMed  Google Scholar 

  242. 242.

    Kraemer WJ, Häkkinen K, Newton RU, et al. Acute hormonal responses to heavy resistance exercise in younger and older men. Eur J Appl Physiol Occup Physiol 1998; 77 (3): 206–11

    CAS  Article  PubMed  Google Scholar 

  243. 243.

    Tenover JS. Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab 1992; 75 (4): 1092–8

    CAS  Article  PubMed  Google Scholar 

  244. 244.

    Ahtiainen JP, Pakarinen A, Kraemer WJ, et al. Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. Can J Appl Physiol 2004; 29 (5): 527–43

    CAS  Article  PubMed  Google Scholar 

  245. 245.

    Häkkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol 1993b; 74 (2): 882–7

    PubMed  Google Scholar 

  246. 246.

    Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 1990; 69 (4): 1442–50

    CAS  PubMed  Google Scholar 

  247. 247.

    McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol 2009; 105 (5): 695–704

    CAS  Article  PubMed  Google Scholar 

  248. 248.

    Passelergue P, Robert A, Lac G. Salivary cortisol and testosterone variations during an official and a simulated weight-lifting competition. Int J Sports Med 1995; 16 (5): 298–303

    CAS  Article  PubMed  Google Scholar 

  249. 249.

    Bosco C, Colli R, Bonomi R, et al. Monitoring strength training: neuromuscular and hormonal profile. Med Sci Sports Exerc 2000; 32 (1): 202–8

    CAS  PubMed  Google Scholar 

  250. 250.

    Smilios I, Pilianidis T, Karamouzis M, et al. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 2003; 35 (4): 644–54

    CAS  Article  PubMed  Google Scholar 

  251. 251.

    Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching. Neuroendocrine responses. Sports Med 1997; 23 (2): 106–29

    CAS  Article  PubMed  Google Scholar 

  252. 252.

    Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med 1995; 20 (4): 251–76

    CAS  Article  PubMed  Google Scholar 

  253. 253.

    Urhausen A, Kindermann W. Diagnosis of overtraining: What tools do we have? Sports Med 2002; 32 (2): 95–102

    Article  PubMed  Google Scholar 

  254. 254.

    Fry AC, Kraemer WJ, Stone MH, et al. Endocrine and performance responses to high volume training and amino acid supplementation in elite junior weightlifters. Int J Sport Nutr 1993; 3 (3): 306–22

    CAS  PubMed  Google Scholar 

  255. 255.

    Häkkinen K, Pakarinen A, Alen M, et al. Relationships between training volume, physical performance capacity, and serum hormone concentrations during prolonged training in elite weight lifters. Int J Sports Med 1987b; 8 (1): 61–5

    Article  PubMed  Google Scholar 

  256. 256.

    Wu CL, Hung W, Wang SY, et al. Hormonal responses in heavy training and recovery periods in an elite male weightlifter. J Sport Sci Med 2008; 7: 560–1

    Google Scholar 

  257. 257.

    Häkkinen K, Pakarinen A, Alén M, et al. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol 1985; 53 (4): 287–93

    Article  PubMed  Google Scholar 

  258. 258.

    Stahl F, Dörner G. Responses of salivary cortisol levels to stress-situations. Endokrinologie 1982; 80 (2): 158–62

    CAS  PubMed  Google Scholar 

  259. 259.

    French DN, Kraemer WJ, Volek JS, et al. Anticipatory responses of catecholamines on muscle force production. J Appl Physiol 2007; 102 (1): 94–102

    CAS  Article  PubMed  Google Scholar 

  260. 260.

    Al-Damluji S. Adrenergic mechanisms in the control of corticotrophin secretion. J Endocrinol 1988; 119 (1): 5–14

    CAS  Article  PubMed  Google Scholar 

  261. 261.

    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med 2005; 35 (4): 339–61

    Article  PubMed  Google Scholar 

  262. 262.

    Ahtiainen J, Pakarinen A, Alen M, et al. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 2003; 89 (6): 555–63

    CAS  Article  PubMed  Google Scholar 

  263. 263.

    Godfrey RJ, Madgwick Z, Whyte GP. The exercise- induced growth hormone response in athletes. Sports Med 2003; 33 (8): 599–613

    Article  PubMed  Google Scholar 

  264. 264.

    Goto K, Sato K, Takamatsu K. A single set of low intensity resistance exercise immediately following high intensity resistance exercise stimulates growth hormone secretion in men. J Sports Med Phys Fitness 2003; 43 (2): 243–9

    CAS  PubMed  Google Scholar 

  265. 265.

    Kraemer W, Marchitelli L, Gordon S, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 1990; 69 (4): 1442–50

    CAS  PubMed  Google Scholar 

  266. 266.

    Linnamo V, Pakarinen A, Komi PV, et al. Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res 2005; 19 (3): 566–71

    PubMed  Google Scholar 

  267. 267.

    Taylor JM, Thompson HS, Clarkson PM, et al. Growth hormone response to an acute bout of resistance exercise in weight-trained and non-weight-trained women. J Strength Cond Res 2000; 14 (2): 220–7

    Google Scholar 

Download references

Acknowledgements

The authors have no potential conflicts of interest. No funding was received for this review. The authors would like to thank Jonathan Milne and our athlete model for their assistance with supplying the photographs for this publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam Storey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Storey, A., Smith, H.K. Unique Aspects of Competitive Weightlifting. Sports Med 42, 769–790 (2012). https://doi.org/10.1007/BF03262294

Download citation

Keywords

  • Resistance Exercise
  • Power Athlete
  • Isometric Peak Force
  • Untrained Adult
  • Male Weightlifter