Kaufman DW, Kelly JP, Rosenberg L, et al. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA 2002; 287 (3): 337–44.
PubMed
Article
Google Scholar
Gurwitz JH, Field TS, Harrold LR, et al. Incidence and preventability of adverse drug events among older persons in the ambulatory setting. JAMA 2003; 289 (9): 1107–16.
PubMed
Article
Google Scholar
Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol 2009; 66 (12): 1447–55.
PubMed
Article
Google Scholar
Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. Lancet 2006; 367 (9518): 1262–70.
PubMed
Article
Google Scholar
Graham JE, Rockwood K, Beattie BL, et al. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet 1997; 349 (9068): 1793–6.
PubMed
CAS
Article
Google Scholar
Heinik J. V. A. Kral and the origins of benign senescent forgetfulness and mild cognitive impairment. Int Psychogeriatr 2010; 22 (3): 395–402.
PubMed
Article
Google Scholar
Goldman WP, Morris JC. Evidence that age-associated memory impairment is not a normal variant of aging. Alz Dis Ass Dis 2001; 15 (2): 72–9.
CAS
Article
Google Scholar
Chertkow H, Massoud F, Nasreddine Z, et al. Diagnosis and treatment of dementia: 3. Mild cognitive impairment and cognitive impairment without dementia. CMAJ 2008; 178 (10): 1273–85.
PubMed
Google Scholar
Luck T, Luppa M, Briel S, et al. Incidence of mild cognitive impairment: a systematic review. Dement Geriatr Cogn Disord 2010; 29 (2): 164–75.
PubMed
Article
Google Scholar
Busse A, Hensel A, Guhne U, et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 2006; 67 (12): 2176–85.
PubMed
CAS
Article
Google Scholar
Ganguli M, Dodge HH, Shen C, et al. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 2004; 63 (1): 115–21.
PubMed
Article
Google Scholar
Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002; 59 (10): 1594–9.
PubMed
CAS
Article
Google Scholar
Artero S, Ancelin ML, Portet F, et al. Risk profiles for mild cognitive impairment and progression to dementia are gender specific. J Neurol, Neurosurg Psychiatry 2008; 79 (9): 979–84.
CAS
Article
Google Scholar
Eysenck MW, Derakshan N, Santos R, et al. Anxiety and cognitive performance: attentional control theory. Emotion 2007; 7 (2): 336–53.
PubMed
Article
Google Scholar
Lupien SJ, Fiocco A, Wan N, et al. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 2005; 30 (3): 225–42.
PubMed
CAS
Article
Google Scholar
Waxman S. Clinical neuroanatomy. 26th ed. Columbus (OH): The McGraw-Hill Companies, 2009.
Google Scholar
Nestler EJ, Hyman SE, Malenka RC. Molecular neuropharmacology: a foundation for clinical neuroscience. 2nd ed. Columbus (OH): The McGraw-Hill Companies, 2009.
Google Scholar
Hshieh TT, Fong TG, Marcantonio ER, et al. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol A Biol Sci Med Sci 2008; 63 (7): 764–72.
PubMed
Article
Google Scholar
Lucas-Meunier E, Fossier P, Baux G, et al. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003; 446 (1): 17–29.
PubMed
CAS
Google Scholar
Passani MB, Giannoni P, Bucherelli C, et al. Histamine in the brain: beyond sleep and memory. Biochem Pharmacol 2007; 73 (8): 1113–22.
PubMed
CAS
Article
Google Scholar
Barker MJ, Greenwood KM, Jackson M, et al. Cognitive effects of long-term benzodiazepine use: a meta-analysis. CNS Drugs 2004; 18 (1): 37–48.
PubMed
CAS
Article
Google Scholar
Cherrier MM, Amory JK, Ersek M, et al. Comparative cognitive and subjective side effects of immediate-release oxycodone in healthy middle-aged and older adults. J Pain 2009; 10 (10): 1038–50.
PubMed
CAS
Article
Google Scholar
Bloom FE. Neurotransmission and the central nervous system. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill Companies, 2006: 317–39.
Google Scholar
Canadian Pharmacists Association. Compendium of pharmaceuticals and specialties (CPS 2010). Toronto (ON): Webcom Inc., 2010.
Google Scholar
Lacy CF, Armstrong LL, Goldman MP, et al. Drug information handbook (with international trade name index): 2009–2010. 18th ed. Hudson (OH): Lexi-Comp, 2009.
Google Scholar
Lezak MD, Howieson DB, Loring DW, editors. Neuropsychological assessment. 4th ed. New York: Oxford University Press, 2004.
Google Scholar
Guyatt GH, Oxman AD, Kunz R, et al. What is “quality of evidence” and why is it important to clinicians? BMJ 2008; 336 (7651): 995–8.
PubMed
Article
Google Scholar
Loke YK, Price D, Herxheimer A. Chapter 14: adverse effects. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011 [online]. Available from URL: http://www.cochrane-handbook.org [Accessed 2012 Jun 27].
Collie A, Maruff P, Snyder PJ, et al. Cognitive testing in early phase clinical trials: outcome according to adverse event profile in a phase I study. Hum Psychopharmacol 2006; 21 (7): 481–8.
PubMed
CAS
Article
Google Scholar
Mintzer MZ, Griffiths RR. Triazolam and zolpidem: effects on human memory and attentional processes. Psychopharmacology (Berl) 1999; 144 (1): 8–19.
CAS
Article
Google Scholar
Greenblatt DJ, Harmatz JS, Shapiro L, et al. Sensitivity to triazolam in the elderly. N Engl J Med 1991; 324 (24): 1691–8.
PubMed
CAS
Article
Google Scholar
Roehrs T, Merlotti L, Zorick F, et al. Sedative, memory, and performance effects of hypnotics. Psychopharmacology (Berl) 1994; 116 (2): 130–4.
CAS
Article
Google Scholar
Troy SM, Lucki I, Unruh MA, et al. Comparison of the effects of zaleplon, zolpidem, and triazolam on memory, learning, and psychomotor performance. J Clin Psychopharmacol 2000; 20 (3): 328–37.
PubMed
CAS
Article
Google Scholar
Greenblatt DJ, Harmatz JS, Engelhardt N, et al. Pharmacokinetic determinants of dynamic differences among three benzodiazepine hypnotics: flurazepam, temazepam, and triazolam [published erratum appears in Arch Gen Psychiatry 1989 Sep; 46 (9): 793]. Arch Gen Psych 1989; 46 (4): 326–32.
CAS
Article
Google Scholar
Greenblatt DJ, Harmatz JS, Gouthro TA, et al. Distinguishing a benzodiazepine agonist (triazolam) from a non-agonist anxiolytic (buspirone) by electroencephalography: kinetic-dynamic studies. Clin Pharmacol Ther 1994; 56 (1): 100–11.
PubMed
CAS
Article
Google Scholar
Greenblatt DJ, Harmatz JS, von Moltke LL, et al. Age and gender effects on the pharmacokinetics and pharmacodynamics of triazolam, a cytochrome P450 3A substrate. Clin PharmacolTher 2004; 76 (5): 467–79.
CAS
Google Scholar
Greenblatt DJ, Harmatz JS, Von Moltke LL, et al. Comparative kinetics and response to the benzodiazepine agonists triazolam and zolpidem: evaluation of sex-dependent differences. J Pharmacol Exp Ther 2000; 293 (2): 435–43.
PubMed
CAS
Google Scholar
Hemmeter U, Muller M, Bischof R, et al. Effect of zopiclone and temazepam on sleep EEG parameters, psychomotor and memory functions in healthy elderly volunteers. Psychopharmacology (Berl) 2000; 147 (4): 384–96.
CAS
Article
Google Scholar
Curran VH, Schiwy W, Lader M. Differential amnestic properties of benzodiazepines: a dose-response comparison of two drugs with similar elimination half-lives. Psychopharmacology (Berl) 1987; 92: 358–64.
CAS
Article
Google Scholar
Buffett-Jerrott SE, Stewart SH, Bird S, et al. An examination of differences in the time course of oxazepam’s effects on implicit vs explicit memory. J Psychopharmacol 1998; 12 (4): 338–47.
PubMed
CAS
Article
Google Scholar
Buffett-Jerrott SE, Stewart SH, Teehan MD. A further examination of the time-dependent effects of oxazepam and lorazepam on implicit and explicit memory. Psychopharmacology (Berl) 1998; 138: 344–53.
CAS
Article
Google Scholar
Stewart SH, Rioux GF, Connolly JF, et al. Effects of oxazepam and lorazepam on implicit and explicit memory: evidence for possible influences of time course. Psychopharmacology (Berl) 1996; 128: 139–49.
CAS
Article
Google Scholar
Pomara N, Willoughby LM, Hashim A, et al. Effects of acute lorazepam administration on aminergic activity in normal elderly subjects: relationship to performance effects and apolipoprotein genotype. Neurochem Res 2004; 29 (7): 1391–8.
PubMed
CAS
Article
Google Scholar
Turner C, Handford ADF, Nicholson AN. Sedation and memory: studies with a histamine H-1 receptor antagonist. J Psychopharmacol 2006; 20 (4): 506–17.
PubMed
CAS
Article
Google Scholar
Allain H, Tessier C, Bentue-Ferrer D, et al. Effects of risperidone on psychometric and cognitive functions in healthy elderly volunteers. Psychopharmacology (Berl) 2003; 165 (4): 419–29.
CAS
Google Scholar
Hanks GW, O’Neill WM, Simpson P, et al. The cognitive and psychomotor effects of opioid analgesics: II. A randomized controlled trial of single doses of morphine, lorazepam and placebo in healthy subjects. Eur J Clin Pharmacol 1995; 48 (6): 455–60.
PubMed
CAS
Article
Google Scholar
Shader RI, Dreyfuss D, Gerrein JR, et al. Sedative effects and impaired learning and recall after single oral doses of lorazepam. Clin Pharmacol Ther 1986; 39 (5): 526–9.
PubMed
CAS
Article
Google Scholar
Healey M, Pickens R, Meisch R, et al. Effects of clorazepate, diazepam, lorazepam, and placebo on human memory. J Clin Psychiatry 1983; 44 (12): 436–9.
PubMed
CAS
Google Scholar
Mac DS, Kumar R, Goodwin DW. Anterograde amnesia with oral lorazepam. J Clin Psychiatry 1985; 46 (4): 137–8.
PubMed
CAS
Google Scholar
Micallef J, Soubrouillard C, Guet F, et al. A double blind parallel group placebo controlled comparison of sedative and amnesic effects of etifoxine and lorazepam in healthy subjects. Fundam Clin Pharmacol 2001; 15 (3): 209–16.
PubMed
CAS
Article
Google Scholar
O’Neill WM, Hanks GW, White L, et al. The cognitive and psychomotor effects of opioid analgesics: I. A randomized controlled trial of single doses of dextropropoxyphene, lorazepam and placebo in healthy subjects. Eur J Clin Pharmacol 1995; 48 (6): 447–53.
PubMed
Google Scholar
Stonnington CM, Snyder PJ, Hentz JG, et al. Double-blind crossover study of the cognitive effects of lorazepam in healthy apolipoprotein E (APOE)-epsilon4 carriers. J Clin Psychiatry 2009; 70 (10): 1379–84.
PubMed
CAS
Article
Google Scholar
Greenblatt DJ, Scavone JM, Harmatz JS, et al. Cognitive effects of beta-adrenergic antagonists after single doses: pharmacokinetics and pharmacodynamics of propranolol, atenolol, lorazepam, and placebo. Clin Pharmacol Ther 1993; 53 (5): 577–84.
PubMed
CAS
Article
Google Scholar
Greenblatt DJ, Harmatz JS, Dorsey C, et al. Comparative single-dose kinetics and dynamics of lorazepam, alprazolam, prazepam, and placebo. Clin Pharmacol Ther 1988; 44 (3): 326–34.
PubMed
CAS
Article
Google Scholar
Schifano F, Curran HV. Pharmacological models of memory dysfunction? A comparison of the effects of scopolamine and lorazepam on word valence ratings, priming and recall. Psychopharmacology (Berl) 1994; 115 (3): 430–4.
CAS
Article
Google Scholar
Meador KJ, Gevins A, Leese PT, et al. Neurocognitive effects of brivaracetam, levetiracetam, and lorazepam. Epilepsia 2011; 52 (2): 264–72.
PubMed
CAS
Google Scholar
Blin O, Simon N, Jouve E, et al. Pharmacokinetic and pharmacodynamic analysis of sedative and amnesic effects of lorazepam in healthy volunteers. Clin Neuropharmacol 2001; 24 (2): 71–81.
PubMed
CAS
Article
Google Scholar
Pomara N, Tun H, DaSilva D, et al. The acute and chronic performance effects of alprazolam and lorazepam in the elderly: relationship to duration of treatment and self-rated sedation. Psychopharmacol Bull 1998; 34 (2): 139–53.
PubMed
CAS
Google Scholar
Coldwell SE, Milgrom P, Getz T, et al. Amnestic and anxiolytic effects of alprazolam in oral surgery patients. J Oral Maxillofac Surg 1997; 55 (10): 1061–70.
PubMed
CAS
Article
Google Scholar
Scavone JM, Greenblatt DJ, Goddard JE, et al. The pharmacokinetics and pharmacodynamics of sublingual and oral alprazolam in the post-prandial state. Eur J Clin Pharmacol 1992; 42 (4): 439–43.
PubMed
CAS
Google Scholar
van der Meyden CH, Bartel PR, Sommers DK, et al. Effects of clobazam and clonazepam on saccadic eye movements and other parameters of psychomotor performance. Eur J Clin Pharmacol 1989; 37: 365–9.
PubMed
Article
Google Scholar
Unrug-Neervoort A, Van Luijtelaar G, Coenen A. Cognition and vigilance: differential effects of diazepam and buspirone on memory and psychomotor performance. Neuropsychobiology 1992; 26 (3): 146–50.
PubMed
CAS
Article
Google Scholar
Friedman H, Greenblatt DJ, Peters GR, et al. Pharmacokinetics and pharmacodynamics of oral diazepam: effect of dose, plasma concentration, and time. Clin Pharmacol Ther 1992; 52 (2): 139–50.
PubMed
CAS
Article
Google Scholar
Block RI, DeVoe M, Stanley B, et al. Memory performance in individuals with primary degenerative dementia: its similarity to diazepam-induced impairments. Exp Aging Res 1985; 11 (3–4): 151–5.
PubMed
CAS
Google Scholar
Cutson TM, Gray SL, Hughes MA, et al. Effect of a single dose of diazepam on balance measures in older people. J Am Geriatr Soc 1997; 45 (4): 435–40.
PubMed
CAS
Google Scholar
Blin O, Micallef J, Audebert C, et al. A double-blind, placebo- and flurazepam-controlled investigation of the residual psychomotor and cognitive effects of modified release zolpidem in young healthy volunteers. J Clin Psychopharmacol 2006; 26 (3): 284–9.
PubMed
CAS
Article
Google Scholar
Boyle J, Wolford D, Gargano C, et al. Next-day residual effects of gaboxadol and flurazepam administered at bedtime: a randomized double-blind study in healthy elderly subjects. Hum Psychopharmacol 2009; 24 (1): 61–71.
PubMed
CAS
Article
Google Scholar
Hindmarch I, Legangneux E, Stanley N, et al. A doubleblind, placebo-controlled investigation of the residual psychomotor and cognitive effects of zolpidem-MR in healthy elderly volunteers. Br J Clin Pharmacol 2006; 62 (5): 538–45.
PubMed
CAS
Article
Google Scholar
Cysneiros RM, Farkas D, Harmatz JS, et al. Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine. Clin Pharmacol Ther 2007; 82 (1): 54–62.
PubMed
CAS
Article
Google Scholar
Farber RH, Burke PJ. Post-bedtime dosing with indiplon in adults and the elderly: results from two placebo-controlled, active comparator crossover studies in healthy volunteers. Curr Med Res Opin 2008; 24 (3): 837–46.
PubMed
CAS
Article
Google Scholar
Greenblatt DJ, Legangneux E, Harmatz JS, et al. Dynamics and kinetics of a modified-release formulation of zolpidem: comparison with immediate-release standard zolpidem and placebo. J Clin Pharmacol 2006; 46 (12): 1469–80.
PubMed
CAS
Article
Google Scholar
Otmani S, Demazieres A, Staner C, et al. Effects of prolonged-release melatonin, zolpidem, and their combination on psychomotor functions, memory recall, and driving skills in healthy middle aged and elderly volunteers. Hum Psychopharmacol 2008; 23 (8): 693–705.
PubMed
CAS
Article
Google Scholar
Verster JC, Volkerts ER, Schreuder AHCML, et al. Residual effects of middle-of-the-night administration of zaleplon and zolpidem on driving ability, memory functions, and psychomotor performance. J Clin Psychopharmacol 2002; 22 (6): 576–83.
PubMed
CAS
Article
Google Scholar
Greenblatt DJ, Harmatz JS, von Moltke LL, et al. Comparative kinetics and dynamics of zaleplon, zolpidem, and placebo. Clin Pharmacol Ther 1998; 64 (5): 553–61.
PubMed
CAS
Article
Google Scholar
Fairweather DB, Kerr JS, Hindmarch I. The effects of acute and repeated doses of zolpidem on subjective sleep, psychomotor performance and cognitive function in elderly volunteers. Eur J Clin Pharmacol 1992; 43 (6): 597–601.
PubMed
CAS
Article
Google Scholar
Mets MA, de Vries JM, de Senerpont Domis LM, et al. Next-day effects of ramelteon (8 mg), zopiclone (7.5 mg), and placebo on highway driving performance, memory functioning, psychomotor performance, and mood in healthy adult subjects. Sleep 2011; 34 (10): 1327–34.
PubMed
Google Scholar
Katz IR, Sands LP, Bilker W, et al. Identification of medications that cause cognitive impairment in older people: the case of oxybutynin chloride. J Am Geriatr Soc 1998; 46 (1): 8–13.
PubMed
CAS
Google Scholar
Wesnes KA, Edgar C, Tretter RN, et al. Exploratory pilot study assessing the risk of cognitive impairment or sedation in the elderly following single doses of solifenacin 10mg. Expert Opin Drug Saf 2009; 8 (6): 615–26.
PubMed
CAS
Article
Google Scholar
Kay G, Crook T, Rekeda L, et al. Differential effects of the antimuscarinic agents darifenacin and oxybutynin ER on memory in older subjects. Eur Urol 2006; 50 (2): 317–26.
PubMed
CAS
Article
Google Scholar
Lipton RB, Kolodner K, Wesnes K. Assessment of cognitive function of the elderly population: effects of darifenacin. J Urol 2005; 173 (2): 493–8.
PubMed
Article
Google Scholar
Ghose K, Sedman E. A double-blind comparison of the pharmcodynamic effects of single doses of lofepramine, amitryptyline and placebo in elderly subjects. Eur J Clin Pharmacol 1987; 33: 505–9.
PubMed
CAS
Article
Google Scholar
Nathan PJ, Sitaram G, Stough C, et al. Serotonin, noradrenaline and cognitive function: a preliminary investigation of the acute pharmacodynamic effects of a serotonin versus a serotonin and noradrenaline reuptake inhibitor. Behav Pharmacol 2000; 11 (7–8): 639–42.
PubMed
CAS
Article
Google Scholar
Timoshanko A, Stough C, Vitetta L, et al. A preliminary investigation on the acute pharmacodynamic effects of hypericum on cognitive an psychomotor performance. BehavPharmacol 2001; 12: 635–40.
CAS
Google Scholar
Branconnier RJ, Cole JO. Effects of acute administration of trazodone and amitiptyline on cognition, cardiovascular function, and salivation in the normal geriatric subject. J Clin Psychopharmacol 1981; 1 (6 Suppl.): 82S–88S.
Article
Google Scholar
Iwamoto K, Takahashi M, Nakamura Y, et al. The effects of acute treatment with paroxetine, amitriptyline, and placebo on driving performance and cognitive function in healthy Japanese subjects: a double-blind crossover trial. Hum Psychopharmacol 2008; 23 (5): 399–407.
PubMed
CAS
Article
Google Scholar
Rosenzweig P, Patat A, Zieleniuk I, et al. Cognitive performance in elderly subjects after a single dose of be-floxatone, a new reversible selective monoamine oxidase A inhibitor. Clin Pharmacol Ther 1998; 64 (2): 211–22.
PubMed
CAS
Article
Google Scholar
Warot D, Berlin I, Patat A, et al. Effects pf befloxatone, a reversible selective monoamine oxidase-A inhibitor, on psychomotor function and memory in healthy subjects. J Clin Pharmacol 1996; 36: 942–50.
PubMed
CAS
Article
Google Scholar
Fairweather DB, Kerr JS, Hilton S, et al. A placebo controlled double-blind evaluation of the pharmacodynamics of fengabine vs amitriptyline following single and multiple doses in elderly volunteers. Br J Clin Pharmacol 1993; 35 (3): 278–83.
PubMed
CAS
Article
Google Scholar
Sakulsripong M, Curran HV, Lader M. Does tolerance develop to the sedative and amnesic effects of antide-pressants? A comparison of amitriptyline, trazodone and placebo. Eur J Clin Pharmacol 1991; 40: 40–8.
Article
Google Scholar
Van Laar MW, Volkerts ER, Verbaten MN, et al. Differential effects of amitriptyline, nefazodone and paroxetine on performance and brain indices of visual selective attention and working memory. Psychopharmacology (Berl) 2002; 162: 351–63.
Article
CAS
Google Scholar
Siepmann M, Krause S, Joraschky P, et al. The effects of St John’s wort extract on heart rate variability, cognitive function and quantitative EEG: a comparison with amitriptyline and placebo in healthy men. Br J Clin Pharmacol 2002; 54: 277–82.
PubMed
CAS
Article
Google Scholar
van Laar MW, van Willigenburg AP, Volkerts ER. Acute and subchronic effects of nefazodone and imipramine on highway driving, cognitive functions, and daytime sleepiness in healthy adult and elderly subjects. J Clin Psychopharmacol 1995; 15 (1): 30–40.
PubMed
Article
Google Scholar
Curran HV, Sakulsriprong M, Lader M. Antidepressants and human memory: an investigation of four drugs with different sedative and anticholinergic profiles. Psychopharmacology (Berl) 1988; 95: 520–7.
CAS
Article
Google Scholar
Conen S, Theunissen EL, Vermeeren A, et al. Short-term effects of morning versus evening dose of hydroxyzine 50 mg on cognition in healthy volunteers. J Clin Psychopharmacol 2011; 31 (3): 294–301.
PubMed
CAS
Article
Google Scholar
Shamsi Z, Kimber S, Hindmarch I. An investigation into the effects of cetirizine on cognitive function and psychomotor performance in healthy volunteers. Eur J Clin Pharmacol 2001; 56 (12): 865–71.
PubMed
CAS
Article
Google Scholar
Nicholson AN, Handford ADF, Turner C, et al. Studies on performance and sleepiness with the H1-antihistamine, desloratadine. Aviat Space Environ Med 2003; 74 (8): 809–15.
PubMed
CAS
Google Scholar
Hindmarch I, Johnson S, Meadows R, et al. The acute and sub-chronic effects of levocetirizine, cetirizine, loratadine, promethazine and placebo on cognitive function, psychomotor performance, and weal and flare. Curr Med Res Opin 2001; 17 (4): 241–55.
PubMed
CAS
Google Scholar
Ridout F, Hindmarch I. The effects of acute doses of fexofenadine, promethazine, and placebo on cognitive and psychomotor function in healthy Japanese volunteers. Ann Allergy Asthma Immunol 2003; 90 (4): 404–10.
PubMed
CAS
Article
Google Scholar
Scavone JM, Greenblatt DJ, Harmatz JS, et al. Pharmacokinetics and pharmacodynamics of diphenhydramine 25 mg in young and elderly volunteers. J Clin Pharmacol 1998; 38 (7): 603–9.
PubMed
CAS
Article
Google Scholar
Mansfield L, Mendoza C, Flores J, et al. Effects of fexofenadine, diphenhydramine, and placebo on performance of the test of variables of attention (TOVA). Ann Allergy Asthma Immunol 2003; 90 (5): 554–9.
PubMed
CAS
Article
Google Scholar
Kay GG, Berman B, Mockoviak SH, et al. Initial and steady-state effects of diphenhydramine and loratadine on sedation, cognition, mood, and psychomotor performance. Arch Intern Med 1997; 157 (20): 2350–6.
PubMed
CAS
Article
Google Scholar
Hindmarch I, Shamsi Z. The effects of single and repeated administration of ebastine on cognition and psychomotor performance in comparison to triprolidine and placebo in healthy volunteers. Curr Med Res Opin 2001; 17 (4): 273–81.
PubMed
CAS
Google Scholar
Theunissen EL, van Kroonenburgh MJ, van Deursen JA, et al. Stimulating effects of the antihistamine fexofenadine: testing the dopamine transporter hypothesis. Psychopharmacology (Berl) 2006; 187 (1): 95–102.
CAS
Article
Google Scholar
Quigley N, Morgan D, Idzikowski C, et al. The effect of chlorpromazine and benzhexol on memory and psychomotor function in healthy volunteers. J Psychopharmacol 1996; 10 (2): 146–52.
PubMed
CAS
Article
Google Scholar
Beuzen JN, Taylor N, Wesnes K, et al. A comparison of the effects of olanzapine, haloperidol and placebo on cognitive and psychomotor functions in healthy elderly volunteers. J Psychopharmacol 1999; 13 (2): 152–8.
PubMed
CAS
Article
Google Scholar
Hanlon JT, Horner RD, Schmader KE, et al. Benzodiazepine use and cognitive function among community-dwelling elderly. Clin Pharmacol Ther 1998; 64 (6): 684–92.
PubMed
CAS
Article
Google Scholar
Bierman EJ, Comijs HC, Gundy CM, et al. The effect of chronic benzodiazepine use on cognitive functioning in older persons: good, bad or indifferent? Int J Geriatr Psychiatry 2007; 22 (12): 1194–200.
PubMed
CAS
Article
Google Scholar
Ebly EM, Hogan DB, Fung TS. Potential adverse outcomes of psychotropic and narcotic drug use in Canadian seniors. J Clin Epidemiol 1997; 50 (7): 857–63.
PubMed
CAS
Article
Google Scholar
Paterniti S, Dufouil C, Alperovitch A. Long-term benzodiazepine use and cognitive decline in the elderly: the Epidemiology of Vascular Aging Study. J Clin Psychopharmacol 2002; 22 (3): 285–93.
PubMed
CAS
Article
Google Scholar
Allard J, Artero S, Ritchie K. Consumption of psychotropic medication in the elderly: a re-evaluation of its effect on cognitive performance. Int J Geriatr Psychiatry 2003; 18 (10): 874–8.
PubMed
Article
Google Scholar
Ancelin ML, Artero S, Portet F, et al. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ 2006; 332 (7539): 455–8.
PubMed
Article
Google Scholar
Low LF, Anstey KJ, Sachdev P. Use of medications with anticholinergic properties and cognitive function in a young-old community sample. Int J Geriatr Psychiatry 2009; 24 (6): 578–84.
PubMed
Article
Google Scholar
Cancelli I, Gigli GL, Piani A, et al. Drugs with anticholinergic properties as a risk factor for cognitive impairment in elderly people: a population-based study. J Clin Psychopharmacol 2008; 28 (6): 654–9.
PubMed
Article
Google Scholar
Cao YJ, Mager DE, Simonsick EM, et al. Physical and cognitive performance and burden of anticholinergics, sedatives, and ACE inhibitors in older women. Clin Pharmacol Ther 2008; 83 (3): 422–9.
PubMed
CAS
Article
Google Scholar
Hilmer SN, Mager DE, Simonsick EM, et al. A drug burden index to define the functional burden of medications in older people. Arch Intern Med 2007; 167 (8): 781–7.
PubMed
Article
Google Scholar
Lechevallier-Michel N, Molimard M, Dartigues JF, et al. Drugs with anticholinergic properties and cognitive performance in the elderly: results from the PAQUID Study. Br J Clin Pharmacol 2004; 59 (2): 143–51.
Article
Google Scholar
Merchant RA, Li B, Yap KB, et al. Use of drugs with anticholinegic effects and cognitive impairment in community-living older persons. Age Ageing 2008; 38 (1): 105–8.
PubMed
Article
Google Scholar
Uusvaara J, Pitkala KH, Tienari PJ, et al. Association between anticholinergic drugs and apolipoprotein e epsilon4 allele and poorer cognitive function in older cardiovascular patients: a cross-sectional study. J Am Geriatr Soc 2009; 57 (3): 427–31.
PubMed
Article
Google Scholar
Podewils LJ, Lyketsos CG. Tricyclic antidepressants and cognitive decline. Psychosomatics 2002; 43 (1): 31–5.
PubMed
CAS
Article
Google Scholar
Bottiggi KA, Salazar JC, Yu L, et al. Lone-term cognitive impact of anticholinergic medications in older adults. Am J Geriatr Psychiatry 2006; 14 (11): 980–4.
PubMed
Article
Google Scholar
Basu R, Dodge H, Stoehr GP, et al. Sedative-hypnotic use of diphenhydramine in a rural, older adult, community-based cohort: effects on cognition. Am J Geriatr Psychiatry 2003; 11 (2): 205–13.
PubMed
Google Scholar
Carriere I, Fourrier-Reglat A, Dartigues JF, et al. Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-city study. Arch Intern Med 2009; 169 (14): 1317–24.
PubMed
CAS
Article
Google Scholar
Campbell NL, Boustani MA, Lane KA, et al. Use of anticholinergics and the risk of cognitive impairment in an African American population. Neurology 2010; 75 (2): 152–9.
PubMed
CAS
Article
Google Scholar
Fox C, Richardson K, Maidment ID, et al. Anticholinergic medication use and cognitive impairment in the older population: the medical research council cognitive function and ageing study. J Am Geriatr Soc 2011; 59 (8): 1477–83.
PubMed
Article
Google Scholar
Curran HV. Tranquillising memories: a review of the effects of benzodiazepines on human memory. Biol Psychol 1986; 23 (2): 179–213.
PubMed
CAS
Article
Google Scholar