Skip to main content
Log in

Molecular Characterization of Head and Neck Cancer

How Close to Personalized Targeted Therapy?

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Molecular targeted therapy in head and neck squamous cell carcinoma (HNSCC) continues to make strides, and holds much promise. Cetuximab remains the sole US FDA-approved molecular targeted therapy available for HNSCC, though several new biologic agents targeting the epidermal growth factor receptor (EGFR) and other pathways are currently in the regulatory approval pipeline. While targeted therapies have the potential to be personalized, their current use in HNSCC is not personalized. This is illustrated for EGFR-targeted drugs, where EGFR as a molecular target has yet to be individualized for HNSCC. Future research needs to identify factors that correlate with response (or lack of one) and the underlying genotype-phenotype relationship that dictates this response. Comprehensive exploration of genetic and epigenetic landscapes in HNSCC is opening new frontiers to further enlighten and mechanistically inform newer as well as existing molecular targets, and to set a course for eventually translating these discoveries into therapies for patients. This opinion offers a snapshot of the evolution of molecular subtyping in HNSCC and its current clinical applicability, as well as new emergent paradigms with implications for controlling this disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Cancer Institute. SEER cancer statistics review 1975–2006: section 16: melanoma of the skin [online]. Available from URL: http://seer.cancer.gov/csr/1975_2006/ [Accessed 2012 Jun 27].

  2. Brockstein B, Haraf DJ, Rademaker AW, et al. Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience. Ann Oncol 2004 Aug; 15 (8): 1179–86.

    Article  PubMed  CAS  Google Scholar 

  3. American Cancer Society Inc. Cancer facts & figures 2012. Atlanta (GA): American Cancer Society Inc., 2012 [online]. Available from URL: http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2012 [Accessed 2012 Jun 27].

  4. Carvalho AL, Nishimoto IN, Califano JA, et al. Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer 2005 May 1; 114 (5): 806–16.

    Article  PubMed  CAS  Google Scholar 

  5. Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst 2007 May 16; 99 (10): 777–89.

    Article  PubMed  Google Scholar 

  6. Hashibe M, Brennan P, Chuang SC, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev 2009 Feb; 18 (2): 541–50.

    Article  PubMed  CAS  Google Scholar 

  7. Gillison ML, Lowy DR. A causal role for human papillomavirus in head and neck cancer. Lancet 2004 May 8; 363 (9420): 1488–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010 Jul 1; 363 (1): 24–35.

    Article  PubMed  CAS  Google Scholar 

  9. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 2008 Feb 20; 100 (4): 261–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gritz ER, Dresler C, Sarna L. Smoking, the missing drug interaction in clinical trials: ignoring the obvious. Cancer Epidemiol Biomarkers Prev 2005 Oct; 14 (10): 2287–93.

    Article  PubMed  CAS  Google Scholar 

  11. Onoda N, Nehmi A, Weiner D, et al. Nicotine affects the signaling of the death pathway, reducing the response of head and neck cancer cell lines to DNA damaging agents. Head Neck 2001 Oct; 23 (10): 860–70.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffman HT, Karnell LH, Funk GF, et al. The National Cancer Data Base report on cancer of the head and neck. Arch Otolaryngol Head Neck Surg 1998 Sep; 124 (9): 951–62.

    Article  PubMed  CAS  Google Scholar 

  13. Shavers VL, Harlan LC, Winn D, et al. Racial/ethnic patterns of care for cancers of the oral cavity, pharynx, larynx, sinuses, and salivary glands. Cancer Metastasis Rev 2003 Mar; 22 (1): 25–38.

    Article  PubMed  Google Scholar 

  14. Settle K, Taylor R, Wolf J, et al. Race impacts outcome in stage III/IV squamous cell carcinomas of the head and neck after concurrent chemoradiation therapy. Cancer 2009 Apr 15; 115 (8): 1744–52.

    Article  PubMed  CAS  Google Scholar 

  15. Chernock RD, Zhang Q, El-Mofty SK, et al. Human papillomavirus-related squamous cell carcinoma of the oropharynx: a comparative study in Whites and African Americans. Arch Otolaryngol Head Neck Surg 2011 Feb; 137 (2): 163–9.

    Article  PubMed  Google Scholar 

  16. Torres JB, Kittles RA. The relationship between “race” and genetics in biomedical research. Curr Hypertens Rep 2007 Jun; 9 (3): 196–201.

    Article  PubMed  Google Scholar 

  17. Worsham MJ, Divine G, Kittles RA. Race as a social construct in head and neck cancer outcomes. Otolaryngol Head Neck Surg 2011 Mar; 144 (3): 381–9.

    Article  PubMed  Google Scholar 

  18. Worsham MJ, Stephen JK, Lu M, et al. Disparate molecular, histopathology, and clinical factors in head and neck squamous cell carcinoma racial groups. Otolaryngol Head Neck Surg. Epub 2012 Mar 12.

  19. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 1953 Sep; 6 (5): 963–8.

    Article  PubMed  CAS  Google Scholar 

  20. Koch WM, Boyle JO, Mao L, et al. p53 gene mutations as markers of tumor spread in synchronous oral cancers. Arch Otolaryngol Head Neck Surg 1994 Sep; 120 (9): 943–7.

    Article  PubMed  CAS  Google Scholar 

  21. Bedi GC, Westra WH, Gabrielson E, et al. Multiple head and neck tumors: evidence for a common clonal origin. Cancer Res 1996 Jun 1; 56 (11): 2484–7.

    PubMed  CAS  Google Scholar 

  22. Worsham MJ, Wolman SR, Carey TE, et al. Common clonal origin of synchronous primary head and neck squamous cell carcinomas: analysis by tumor karyotypes and fluorescence in situ hybridization. Hum Pathol 1995 Mar; 26 (3): 251–61.

    Article  PubMed  CAS  Google Scholar 

  23. Patel SG, Shah JP. TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 2005 Jul–Aug; 55 (4): 242–58; quiz 261–2, 264.

    Article  PubMed  Google Scholar 

  24. Someya M, Sakata K, Matsumoto Y, et al. The association of DNA-dependent protein kinase activity with chromosomal instability and risk of cancer. Carcinogenesis 2006 Jan; 27 (1): 117–22.

    Article  PubMed  CAS  Google Scholar 

  25. Smiraglia DJ, Smith LT, Lang JC, et al. Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 2003 Jan; 40 (1): 25–33.

    Article  PubMed  CAS  Google Scholar 

  26. Worsham MJ, Pals G, Schouten JP, et al. Delineating genetic pathways of disease progression in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2003 Jul; 129 (7): 702–8.

    Article  PubMed  Google Scholar 

  27. Whang-Peng J, Banks-Schlegel SP, Lee EC. Cytogenetic studies of esophageal carcinoma cell lines. Cancer Genet Cytogenet 1990 Mar; 45 (1): 101–20.

    Article  PubMed  CAS  Google Scholar 

  28. Worsham MJ, Carey TE, Benninger MS, et al. Clonal cytogenetic evolution in a squamous cell carcinoma of the skin from a xeroderma pigmentosum patient. Genes Chromosomes Cancer 1993 Jul; 7 (3): 158–64.

    Article  PubMed  CAS  Google Scholar 

  29. Worsham MJ, Van Dyke DL, Grenman SE, et al. Consistent chromosome abnormalities in squamous cell carcinoma of the vulva. Genes Chromosomes Cancer 1991 Nov; 3 (6): 420–32.

    Article  PubMed  CAS  Google Scholar 

  30. De Schutter H, Spaepen M, McBride WH, et al. The clinical relevance of microsatellite alterations in head and neck squamous cell carcinoma: a critical review. Eur J Hum Genet 2007 Jul; 15 (7): 734–41.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou X, Jordan RC, Li Y, et al. Frequent allelic imbalances at 8p and 11q22 in oral and oropharyngeal epithelial dysplastic lesions. Cancer Genet Cytogenet 2005 Aug; 161 (1): 86–9.

    Article  PubMed  CAS  Google Scholar 

  32. Coon SW, Savera AT, Zarbo RJ, et al. Prognostic implications of loss of heterozygosity at 8p21 and 9p21 in head and neck squamous cell carcinoma. Int J Cancer 2004 Aug 20; 111 (2): 206–12.

    Article  PubMed  CAS  Google Scholar 

  33. Worsham MJ, Chen KM, Tiwari N, et al. Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2006 Apr; 132 (4): 409–15.

    Article  PubMed  Google Scholar 

  34. Saglam O, Shah V, Worsham MJ. Molecular differentiation of early and late stage laryngeal squamous cell carcinoma: an exploratory analysis. Diagn Mol Pathol 2007 Dec; 16 (4): 218–21.

    Article  PubMed  CAS  Google Scholar 

  35. Akervall J. Genomic screening of head and neck cancer and its implications for therapy planning. Eur Arch Otorhinolaryngol 2006 Apr; 263 (4): 297–304.

    Article  PubMed  Google Scholar 

  36. Worsham MJ, Wolman SR, Carey TE, et al. Chromosomal aberrations identified in culture of squamous carcinomas are confirmed by fluorescence in situ hybridisation. Mol Pathol 1999 Feb; 52 (1): 42–6.

    Article  PubMed  CAS  Google Scholar 

  37. Huang Q, Yu GP, McCormick SA, et al. Genetic differences detected by comparative genomic hybridization in head and neck squamous cell carcinomas from different tumor sites: construction of oncogenetic trees for tumor progression. Genes Chromosomes Cancer 2002 Jun; 34 (2): 224–33.

    Article  PubMed  CAS  Google Scholar 

  38. Gotte K, Tremmel SC, Popp S, et al. Intratumoral genomic heterogeneity in advanced head and neck cancer detected by comparative genomic hybridization. Adv Otorhinolaryngol 2005; 62: 38–48.

    PubMed  Google Scholar 

  39. Carey TE, Frank CJ, Raval JR, et al. Identifying genetic changes associated with tumor progression in squamous cell carcinoma. Acta Otolaryngol Suppl 1997; 529: 229–32.

    Article  PubMed  CAS  Google Scholar 

  40. Buchhagen DL, Worsham MJ, Dyke DL, et al. Two regions of homozygosity on chromosome 3p in squamous cell carcinoma of the head and neck: comparison with cytogenetic analysis. Head Neck 1996 Nov–Dec; 18 (6): 529–37.

    Article  PubMed  CAS  Google Scholar 

  41. Carey TE, Worsham MJ, Van Dyke DL. Chromosomal biomarkers in the clonal evolution of head and neck squamous neoplasia. J Cell Biochem Suppl 1993; 17F: 213–22.

    Article  PubMed  CAS  Google Scholar 

  42. Carey TE, Van Dyke DL, Worsham MJ. Nonrandom chromosome aberrations and clonal populations in head and neck cancer. Anticancer Res 1993 Nov–Dec; 13 (6B): 2561–7.

    PubMed  CAS  Google Scholar 

  43. Bradford CR, Kimmel KA, Van Dyke DL, et al. 11p deletions and breakpoints in squamous cell carcinoma: association with altered reactivity with the UM-E7 antibody. Genes Chromosomes Cancer 1991 Jul; 3 (4): 272–82.

    Article  PubMed  CAS  Google Scholar 

  44. Carey TE, Van Dyke DL, Worsham MJ, et al. Characterization of human laryngeal primary and metastatic squamous cell carcinoma cell lines UM-SCC-17A and UM-SCC-17B. Cancer Res 1989 Nov 1; 49 (21): 6098–107.

    PubMed  CAS  Google Scholar 

  45. Worsham MJ, Benninger MJ, Zarbo RJ, et al. Deletion 9p22-pter and loss of Y as primary chromosome abnormalities in a squamous cell carcinoma of the vocal cord. Genes Chromosomes Cancer 1993 Jan; 6 (1): 58–60.

    Article  PubMed  CAS  Google Scholar 

  46. Van Dyke DL, Worsham MJ, Benninger MS, et al. Recurrent cytogenetic abnormalities in squamous cell carcinomas of the head and neck region. Genes Chromosomes Cancer 1994 Mar; 9 (3): 192–206.

    Article  PubMed  Google Scholar 

  47. Nemunaitis J, Nemunaitis J. Head and neck cancer: response to p53-based therapeutics. Head Neck 2011 Jan; 33 (1): 131–4.

    Article  PubMed  Google Scholar 

  48. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999 Apr 2; 97 (1): 53–61.

    Article  PubMed  CAS  Google Scholar 

  49. Yarbrough WG. The ARF-p16 gene locus in carcinogenesis and therapy of head and neck squamous cell carcinoma. Laryngoscope 2002 Dec; 112 (12): 2114–28.

    Article  PubMed  CAS  Google Scholar 

  50. Bova RJ, Quinn DI, Nankervis JS, et al. Cyclin D1 and p16INK4A expression predict reduced survival in carcinoma of the anterior tongue. Clin Cancer Res 1999 Oct; 5 (10): 2810–9.

    PubMed  CAS  Google Scholar 

  51. Weinberger PM, Yu Z, Haffty BG, et al. Prognostic significance of p16 protein levels in oropharyngeal squamous cell cancer. Clin Cancer Res 2004 Sep 1; 10 (17): 5684–91.

    Article  PubMed  CAS  Google Scholar 

  52. Smeets SJ, Hesselink AT, Speel EJ, et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer 2007 Dec 1; 121 (11): 2465–72.

    Article  PubMed  CAS  Google Scholar 

  53. Modjtahedi H, Dean C. The receptor for EGF and its ligands — expression, prognostic value and target for therapy in cancer (review). Int J Oncol 1994 Feb; 4 (2): 277–96.

    PubMed  CAS  Google Scholar 

  54. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 1993 Aug 1; 53 (15): 3579–84.

    PubMed  CAS  Google Scholar 

  55. Ongkeko WM, Altuna X, Weisman RA, et al. Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Am J Clin Pathol 2005 Jul; 124 (1): 71–6.

    Article  PubMed  CAS  Google Scholar 

  56. Sheu JJ, Hua CH, Wan L, et al. Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res 2009 Mar 15; 69 (6): 2568–76.

    Article  PubMed  CAS  Google Scholar 

  57. Kim S, Grandis JR, Rinaldo A, et al. Emerging perspectives in epidermal growth factor receptor targeting in head and neck cancer. Head Neck 2008 May; 30 (5): 667–74.

    Article  PubMed  Google Scholar 

  58. Rubin Grandis J, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 1998 Jun 3; 90 (11): 824–32.

    Article  PubMed  CAS  Google Scholar 

  59. Temam S, Kawaguchi H, El-Naggar AK, et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol 2007 Jun 1; 25 (16): 2164–70.

    Article  PubMed  CAS  Google Scholar 

  60. Chung CH, Ely K, McGavran L, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol 2006 Sep 1; 24 (25): 4170–6.

    Article  PubMed  CAS  Google Scholar 

  61. Ang KK, Berkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 2002 Dec 15; 62 (24): 7350–6.

    PubMed  CAS  Google Scholar 

  62. Grandis JR, Tweardy DJ. TGF-alpha and EGFR in head and neck cancer. J Cell Biochem Suppl 1993; 17F: 188–91.

    Article  PubMed  CAS  Google Scholar 

  63. Grandis JR, Chakraborty A, Zeng Q, et al. Downmodulation of TGF-alpha protein expression with antisense oligonucleotides inhibits proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. J Cell Biochem 1998 Apr 1; 69 (1): 55–62.

    Article  PubMed  CAS  Google Scholar 

  64. Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002 Jun 15; 30 (12): e57.

    Article  PubMed  Google Scholar 

  65. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011 Aug 26; 333 (6046): 1157–60.

    Article  PubMed  CAS  Google Scholar 

  66. Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011 Aug 26; 333 (6046): 1154–7.

    Article  PubMed  CAS  Google Scholar 

  67. Costello JF, Plass C. Methylation matters. J Med Genet 2001 May; 38 (5): 285–303.

    Article  PubMed  CAS  Google Scholar 

  68. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992 Jun 12; 69 (6): 915–26.

    Article  PubMed  CAS  Google Scholar 

  69. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993 Nov 25; 366 (6453): 362–5.

    Article  PubMed  CAS  Google Scholar 

  70. Pfeifer GP, Tanguay RL, Steigerwald SD, et al. In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev 1990 Aug; 4 (8): 1277–87.

    Article  PubMed  CAS  Google Scholar 

  71. Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000 Feb; 24 (2): 132–8.

    Article  PubMed  CAS  Google Scholar 

  72. Issa JP, Vertino PM, Wu J, et al. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 1993 Aug 4; 85 (15): 1235–40.

    Article  PubMed  CAS  Google Scholar 

  73. Lin SY, Yeh KT, Chen WT, et al. Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer. Anticancer Res 2004 May–Jun; 24 (3a): 1645–50.

    PubMed  CAS  Google Scholar 

  74. Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141–96.

    Article  PubMed  CAS  Google Scholar 

  75. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999 Feb; 21 (2): 163–7.

    Article  PubMed  CAS  Google Scholar 

  76. Chan MF, Liang G, Jones PA. Relationship between transcription and DNA methylation. Curr Top Microbiol Immunol 2000; 249: 75–86.

    Article  PubMed  CAS  Google Scholar 

  77. Worsham MJ, Stephen JK, Chen KM, et al. Delineating an epigenetic continuum in head and neck cancer. Cancer Lett. Epub 2012 Mar 1.

  78. Cairns P. Detection of promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Ann N Y Acad Sci 2004 Jun; 1022:40–3.

    Article  PubMed  CAS  Google Scholar 

  79. Kim H, Kwon YM, Kim JS, et al. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol 2004 Jun 15; 22 (12): 2363–70.

    Article  PubMed  CAS  Google Scholar 

  80. Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 2004 Oct 15; 104 (8): 2492–8.

    Article  PubMed  CAS  Google Scholar 

  81. Olden K, Isaac L, Roberts L. Neighborhood-specific epigenome analysis: the pathway forward to understanding gene-environment interactions. N C Med J 2011 Mar–Apr; 72 (2): 125–7.

    PubMed  Google Scholar 

  82. Garber K. Breaking the silence: the rise of epigenetic therapy. J Natl Cancer Inst 2002 Jun 19; 94 (12): 874–5.

    Article  PubMed  Google Scholar 

  83. Kopelovich L, Crowell JA, Fay JR. The epigenome as a target for cancer chemoprevention. J Natl Cancer Inst 2003 Dec 3; 95 (23): 1747–57.

    Article  PubMed  CAS  Google Scholar 

  84. Miracca EC, Kowalski LP, Nagai MA. High prevalence of p16 genetic alterations in head and neck tumours. Br J Cancer 1999 Oct; 81 (4): 677–83.

    Article  PubMed  CAS  Google Scholar 

  85. Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer. Cancer Res 2001 Apr 15; 61 (8): 3225–9.

    PubMed  CAS  Google Scholar 

  86. Rosas SL, Koch W, da Costa Carvalho MG, et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 2001 Feb 1; 61 (3): 939–42.

    PubMed  CAS  Google Scholar 

  87. Hasegawa M, Nelson HH, Peters E, et al. Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 2002 Jun 20; 21 (27): 4231–6.

    Article  PubMed  CAS  Google Scholar 

  88. Viswanathan M, Tsuchida N, Shanmugam G. Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int J Cancer 2003 May 20; 105 (1): 41–6.

    Article  PubMed  CAS  Google Scholar 

  89. El-Naggar AK, Lai S, Clayman G, et al. Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am J Pathol 1997 Dec; 151 (6): 1767–74.

    PubMed  CAS  Google Scholar 

  90. Sanchez-Cespedes M, Esteller M, Wu L, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 2000 Feb 15; 60 (4): 892–5.

    PubMed  CAS  Google Scholar 

  91. Chen K, Sawhney R, Khan M, et al. Methylation of multiple genes as diagnostic and therapeutic markers in primary head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2007 Nov; 133(11): 1131–8.

    Article  PubMed  Google Scholar 

  92. Zou CP, Youssef EM, Zou CC, et al. Differential effects of chromosome 3p deletion on the expression of the putative tumor suppressor RAR beta and on retinoid resistance in human squamous carcinoma cells. Oncogene 2001 Oct 18; 20 (47): 6820–7.

    Article  PubMed  CAS  Google Scholar 

  93. Xu XC, Ro JY, Lee JS, et al. Differential expression of nuclear retinoid receptors in normal, premalignant, and malignant head and neck tissues. Cancer Res 1994 Jul 1; 54 (13): 3580–7.

    PubMed  CAS  Google Scholar 

  94. Pegg AE. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 1990 Oct 1; 50 (19): 6119–29.

    PubMed  CAS  Google Scholar 

  95. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998 Aug; 153 (2): 333–9.

    Article  PubMed  CAS  Google Scholar 

  96. Stephen JK, Chen KM, Shah V, et al. DNA hypermethylation markers of poor outcome in laryngeal cancer. Clin Epigenetics 2010 Sep 1; 1 (1–2): 61–9.

    Article  PubMed  CAS  Google Scholar 

  97. Stephen JK, Symal M, Chen KM, et al. Molecular characterization of late stomal recurrence following total laryngectomy. Oncol Rep 2011 Mar; 25 (3): 669–76.

    PubMed  CAS  Google Scholar 

  98. Stephen JK, Vaught LE, Chen KM, et al. Epigenetic events underlie the pathogenesis of sinonasal papillomas. Mod Pathol 2007 Oct; 20 (10): 1019–27.

    Article  PubMed  CAS  Google Scholar 

  99. Stephen JK, Vaught LE, Chen KM, et al. An epigenetically derived monoclonal origin for recurrent respiratory papillomatosis. Arch Otolaryngol Head Neck Surg 2007 Jul; 133 (7): 684–92.

    Article  PubMed  Google Scholar 

  100. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000 May 3; 92 (9): 709–20.

    Article  PubMed  CAS  Google Scholar 

  101. D’Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 2007 May 10; 356 (19): 1944–56.

    Article  PubMed  Google Scholar 

  102. Chen AA, Marsit CJ, Christensen BC, et al. Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis 2009 Jun; 30 (6): 977–81.

    Article  PubMed  CAS  Google Scholar 

  103. Dayyani F, Etzel CJ, Liu M, et al. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC). Head Neck Oncol 2010; 2: 15.

    Article  PubMed  Google Scholar 

  104. Kreimer AR, Clifford GM, Boyle P, et al. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 2005 Feb; 14 (2): 467–75.

    Article  PubMed  CAS  Google Scholar 

  105. Gillison ML. Human papillomavirus-associated head and neck cancer is a distinct epidemiologic, clinical, and molecular entity. Semin Oncol 2004 Dec; 31 (6): 744–54.

    Article  PubMed  Google Scholar 

  106. Munger K, Baldwin A, Edwards KM, et al. Mechanisms of human papil-lomavirus-induced oncogenesis. J Virol 2004 Nov; 78 (21): 11451–60.

    Article  PubMed  CAS  Google Scholar 

  107. Nguyen M, Song S, Liem A, et al. A mutant of human papillomavirus type 16 E6 deficient in binding alpha-helix partners displays reduced oncogenic potential in vivo. J Virol 2002 Dec; 76 (24): 13039–48.

    Article  PubMed  CAS  Google Scholar 

  108. Hafkamp HC, Speel EJ, Haesevoets A, et al. A subset of head and neck squamous cell carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A and p53 in the absence of mutations in p53 exons 5–8. Int J Cancer 2003 Nov 10; 107 (3): 394–400.

    Article  PubMed  CAS  Google Scholar 

  109. Licitra L, Perrone F, Bossi P, et al. High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J Clin Oncol 2006 Dec 20; 24 (36): 5630–6.

    Article  PubMed  CAS  Google Scholar 

  110. Slebos RJ, Yi Y, Ely K, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res 2006 Feb 1; 12 (3 Pt 1): 701–9.

    Article  PubMed  CAS  Google Scholar 

  111. Smith EM, Wang D, Kim Y, et al. P16INK4a expression, human papillomavirus, and survival in head and neck cancer. Oral Oncol 2008 Feb; 44 (2): 133–42.

    Article  PubMed  CAS  Google Scholar 

  112. Ragin CC, Taioli E, Weissfeld JL, et al. 11q13 amplification status and human papillomavirus in relation to p16 expression defines two distinct etiologies of head and neck tumours. Br J Cancer 2006 Nov 20; 95 (10): 1432–8.

    Article  PubMed  CAS  Google Scholar 

  113. Scheffner M, Werness BA, Huibregtse JM, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990 Dec 21; 63 (6): 1129–36.

    Article  PubMed  CAS  Google Scholar 

  114. Strauss M, Lukas J, Bartek J. Unrestricted cell cycling and cancer. Nat Med 1995 Dec; 1 (12): 1245–6.

    Article  PubMed  CAS  Google Scholar 

  115. Haupt Y, Robles AI, Prives C, et al. Deconstruction of p53 functions and regulation. Oncogene 2002 Nov 28; 21 (54): 8223–31.

    Article  PubMed  CAS  Google Scholar 

  116. Braakhuis BJ, Snijders PJ, Keune WJ, et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J Natl Cancer Inst 2004 Jul 7; 96 (13): 998–1006.

    Article  PubMed  CAS  Google Scholar 

  117. Wiest T, Schwarz E, Enders C, et al. Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene 2002 Feb 28; 21 (10): 1510–7.

    Article  PubMed  CAS  Google Scholar 

  118. van Houten VM, Snijders PJ, van den Brekel MW, et al. Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int J Cancer 2001 Jul 15; 93 (2): 232–5.

    Article  PubMed  Google Scholar 

  119. Clifford GM, Smith JS, Plummer M, et al. Human papillomavirus types in invasive cancer worldwide: a meta-analysis. Br J Cancer 2003; 88: 63–73.

    Article  PubMed  CAS  Google Scholar 

  120. Olivier M, Eeles R, Hollstein M, et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002; 19: 607–14.

    Article  PubMed  CAS  Google Scholar 

  121. Dai M, Clifford GM, le Calvez F, et al., IARC Multicenter Oral Cancer Study Group. Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study. Cancer Res 2004; 64 (2): 468–71.

    Article  PubMed  CAS  Google Scholar 

  122. Califano J, van der Riet P, Westra W, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 1996 Jun 1; 56 (11): 2488–92.

    PubMed  CAS  Google Scholar 

  123. Smeets SJ, Braakhuis BJ, Abbas S, et al. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene 2006 Apr 20; 25 (17): 2558–64.

    Article  PubMed  CAS  Google Scholar 

  124. Dahlgren L, Mellin H, Wangsa D, et al. Comparative genomic hybridization analysis of tonsillar cancer reveals a different pattern of genomic imbalances in human papillomavirus-positive and -negative tumors. Int J Cancer 2003 Nov 1; 107 (2): 244–9.

    Article  PubMed  CAS  Google Scholar 

  125. Martinez I, Wang J, Hobson KF, et al. Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer 2007 Jan; 43 (2): 415–32.

    Article  PubMed  CAS  Google Scholar 

  126. Herrero R, Castellsagué X, Pawlita M, et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst 2003; 95: 1772–83.

    Article  PubMed  Google Scholar 

  127. Brennan JA, Boyle JO, Koch WM, et al. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. N Engl J Med 1995 Mar 16; 332 (11): 712–7.

    Article  PubMed  CAS  Google Scholar 

  128. Gillison ML, D’Souza G, Westra W, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 2008 Mar 19; 100 (6): 407–20.

    Article  PubMed  Google Scholar 

  129. Spanos WC, Nowicki P, Lee DW, et al. Immune response during therapy with cisplatin or radiation for human papillomavirus-related head and neck cancer. Arch Otolaryngol Head Neck Surg 2009 Nov; 135 (11): 1137–46.

    Article  PubMed  Google Scholar 

  130. National Cancer Institute (NCI). Radiation therapy with cisplatin or cetuximab in treating patients with oropharyngeal cancer [ClinicalTrials. gov identifier NCT01302834]. US National Institutes of Health, Clinical-Trials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT01302834 [Accessed 2012 Jun 27].

  131. Schwartz SR, Yueh B, McDougall JK, et al. Human papillomavirus infection and survival in oral squamous cell cancer: a population-based study. Otolaryngol Head Neck Surg 2001; 125 (1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  132. Weinberger PM, Yu Z, Haffty BG, et al. Molecular classification identifies a subset of human papillomavirus-associated oropharyngeal cancers with favorable prognosis. J Clin Oncol 2006 Feb 10; 24 (5): 736–47.

    Article  PubMed  CAS  Google Scholar 

  133. Marur S, D’Souza G, Westra WH, et al. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 2010 Aug; 11 (8): 781–9.

    Article  PubMed  Google Scholar 

  134. Mydlarz WK, Hennessey PT, Califano JA. Advances and perspectives in the molecular diagnosis of head and neck cancer. Expert Opin Med Diagn 2010 Jan 1; 4 (1): 53–65.

    Article  PubMed  CAS  Google Scholar 

  135. Carter CA, Kelly RJ, Giaccone G. Small-molecule inhibitors of the human epidermal receptor family. Expert Opin Investig Drugs 2009 Dec; 18 (12): 1829–42.

    Article  PubMed  CAS  Google Scholar 

  136. Huang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res 2000 Jun; 6 (6): 2166–74.

    PubMed  CAS  Google Scholar 

  137. Huang SM, Li J, Harari PM. Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol Cancer Ther 2002 May; 1 (7): 507–14.

    PubMed  CAS  Google Scholar 

  138. Vincenzi B, Zoccoli A, Pantano F, et al. Cetuximab: from bench to bedside. Curr Cancer Drug Targets 2010 Feb; 10 (1): 80–95.

    Article  PubMed  CAS  Google Scholar 

  139. Lopez-Albaitero A, Lee SC, Morgan S, et al. Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. Cancer Immunol Immunother 2009 Nov; 58 (11): 1853–64.

    Article  PubMed  CAS  Google Scholar 

  140. Fung C, Grandis JR. Emerging drugs to treat squamous cell carcinomas of the head and neck. Expert Opin Emerg Drugs 2010 Sep; 15 (3): 355–73.

    Article  PubMed  CAS  Google Scholar 

  141. Soulieres D, Senzer NN, Vokes EE, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004 Jan 1; 22 (1): 77–85.

    Article  PubMed  CAS  Google Scholar 

  142. Siu LL, Soulieres D, Chen EX, et al. Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a Princess Margaret Hospital Phase II Consortium and National Cancer Institute of Canada Clinical Trials Group study. J Clin Oncol 2007 Jun 1; 25 (16): 2178–83.

    Article  PubMed  CAS  Google Scholar 

  143. Henry Ford Health System. Erlotinib (Tarceva) during first line standard platinum containing chemo for advanced squamous cell head and neck cancer [ClinicalTrials.gov identifier NCT00448240]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00448240 [Accessed 2012 Jun 27].

  144. Hoffmann-La Roche. A study of Tarceva (erlotinib) in patients with resected head and neck squamous cell cancer [ClinicalTrials.gov identifier NCT00412217]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00412217 [Accessed 2012 Jun 27].

  145. MD Anderson Cancer Center. Erlotinib prevention of oral cancer (EPOC) [ClinicalTrials.gov identifier NCT00402779]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00402779 [Accessed 2012 Jun 27].

  146. Del Campo JM, Hitt R, Sebastian P, et al. Effects of lapatinib monotherapy: results of a randomised phase II study in therapy-naive patients with locally advanced squamous cell carcinoma of the head and neck. Br J Cancer 2011 Aug 23; 105 (5): 618–27.

    Article  PubMed  CAS  Google Scholar 

  147. GlaxoSmithKline. Study of adjuvant lapatinib in high-risk head and neck cancer subjects after surgery [ClinicalTrials.gov identifier NCT00424255]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00424255 [Accessed 2012 Jun 27].

  148. Kyzas PA, Cunha IW, Ioannidis JP. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res 2005 Feb 15; 11 (4): 1434–40.

    Article  PubMed  CAS  Google Scholar 

  149. Shang ZJ, Li ZB, Li JR. VEGF is up-regulated by hypoxic stimulation and related to tumour angiogenesis and severity of disease in oral squamous cell carcinoma: in vitro and in vivo studies. Int J Oral Maxillofac Surg 2006 Jun; 35 (6): 533–8.

    Article  PubMed  Google Scholar 

  150. Liang X, Yang D, Hu J, et al. Hypoxia inducible factor-alpha expression correlates with vascular endothelial growth factor-C expression and lymphangiogenesis/angiogenesis in oral squamous cell carcinoma. Anticancer Res 2008 May–Jun; 28 (3A): 1659–66.

    Google Scholar 

  151. Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004 May; 3 (5): 391–400.

    Article  PubMed  CAS  Google Scholar 

  152. Stein MN, Flaherty KT. CCR drug updates: sorafenib and sunitinib in renal cell carcinoma. Clin Cancer Res 2007 Jul 1; 13 (13): 3765–70.

    Article  PubMed  CAS  Google Scholar 

  153. Williamson SK, Moon J, Huang CH, et al. Phase II evaluation of sorafenib in advanced and metastatic squamous cell carcinoma of the head and neck: Southwest Oncology Group Study S0420. J Clin Oncol 2007 Jul 10; 28 (20): 3330–5.

    Article  CAS  Google Scholar 

  154. Choong NW, Kozloff M, Taber D, et al. Phase II study of sunitinib malate in head and neck squamous cell carcinoma. Invest New Drugs 2009 Oct; 28 (5): 677–83.

    Article  PubMed  CAS  Google Scholar 

  155. Machiels JP, Henry S, Zanetta S, et al. Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006–01. J Clin Oncol 2010 Jan 1; 28 (1): 21–8.

    Article  PubMed  CAS  Google Scholar 

  156. Moral M, Paramio JM. Akt pathway as a target for therapeutic intervention in HNSCC. Histol Histopathol 2008 Oct; 23 (10): 1269–78.

    PubMed  CAS  Google Scholar 

  157. Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology 2009; 77 (6): 400–10.

    Article  PubMed  CAS  Google Scholar 

  158. Amornphimoltham P, Sriuranpong V, Patel V, et al. Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01. Clin Cancer Res 2004 Jun 15; 10 (12 Pt 1): 4029–37.

    Article  PubMed  CAS  Google Scholar 

  159. Amornphimoltham P, Leelahavanichkul K, Molinolo A, et al. Inhibition of mammalian target of rapamycin by rapamycin causes the regression of carcinogen-induced skin tumor lesions. Clin Cancer Res 2008 Dec 15; 14 (24): 8094–101.

    Article  PubMed  CAS  Google Scholar 

  160. Aissat N, Le Tourneau C, Ghoul A, et al. Antiproliferative effects of rapamycin as a single agent and in combination with carboplatin and paclitaxel in head and neck cancer cell lines. Cancer Chemother Pharmacol 2008 Jul; 62 (2): 305–13.

    Article  PubMed  CAS  Google Scholar 

  161. Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol 2006 Jun 10; 24 (17): 2606–11.

    Article  PubMed  Google Scholar 

  162. Settle K, Posner MR, Schumaker LM, et al. Racial survival disparity in head and neck cancer results from low prevalence of human papillomavirus infection in Black oropharyngeal cancer patients. Cancer Prev Res (Phila) 2009 Sep; 2 (9): 776–81.

    Article  Google Scholar 

  163. University of Maryland. MAGE-A3/HPV 16 vaccine for squamous cell carcinoma of the head and neck [ClinicalTrials.gov identifier NCT00257738]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00257738 [Accessed 2012 Jun 27].

  164. University of Maryland. Four doses of MAGE vaccine for patients with squamous cell carcinoma of the head and neck [ClinicalTrials.gov identifier NCT00704041]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00704041 [Accessed 2012 Jun 27].

  165. Baleja JD, Cherry JJ, Liu Z, et al. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res 2006 Oct; 72 (1): 49–59.

    Article  PubMed  CAS  Google Scholar 

  166. Jung SO, Ro HS, Kho BH, et al. Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors. Proteomics 2005 Nov; 5 (17): 4427–31.

    Article  PubMed  CAS  Google Scholar 

  167. Sterlinko Grm H, Weber M, Elston R, et al. Inhibition of E6-induced degradation of its cellular substrates by novel blocking peptides. J Mol Biol 2004 Jan 23; 335 (4): 971–85.

    Article  PubMed  CAS  Google Scholar 

  168. Beerheide W, Bernard HU, Tan YJ, et al. Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J Natl Cancer Inst 1999 Jul 21; 91 (14): 1211–20.

    Article  PubMed  CAS  Google Scholar 

  169. Butz K, Denk C, Ullmann A, et al. Induction of apoptosis in human papillomavirus positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci U S A 2000 Jun 6; 97 (12): 6693–7.

    Article  PubMed  CAS  Google Scholar 

  170. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 1999 Apr 15; 59 (8): 1935–40.

    PubMed  CAS  Google Scholar 

  171. Milas L, Mason K, Hunter N, et al. In vivo enhancement of tumor radio-response by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 2000 Feb; 6 (2): 701–8.

    PubMed  CAS  Google Scholar 

  172. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006 Feb 9; 354 (6): 567–78.

    Article  PubMed  CAS  Google Scholar 

  173. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 2010 Jan; 11 (1): 21–8.

    Article  PubMed  CAS  Google Scholar 

  174. Argiris A, Karamouzis MV, Raben D, et al. Head and neck cancer. Lancet 2008 May 17; 371 (9625): 1695–709.

    Article  PubMed  CAS  Google Scholar 

  175. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008 Sep 11; 359 (11): 1116–27.

    Article  PubMed  CAS  Google Scholar 

  176. Hong A, Dobbins T, Lee CS, et al. Relationships between epidermal growth factor receptor expression and human papillomavirus status as markers of prognosis in oropharyngeal cancer. Eur J Cancer 2010 Jul; 46 (11): 2088–96.

    Article  PubMed  CAS  Google Scholar 

  177. National Cancer Institute (NCI). Radiation therapy and cisplatin with or without cetuximab in treating patients with stage III or stage IV head and neck cancer [ClinicalTrials.gov identifier NCT00265941]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00265941 [Accessed 2012 Jun 28].

  178. Stewart JS, Cohen EE, Licitra L, et al. Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck [corrected]. J Clin Oncol 2009 Apr 10; 27 (11): 1864–71.

    Article  PubMed  CAS  Google Scholar 

  179. Massarelli E, Varella-Garcia M, Tang X, et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 2007 May 15; 13 (10): 2890–6.

    Article  PubMed  CAS  Google Scholar 

  180. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007 May 20; 25 (15): 1960–6.

    Article  PubMed  CAS  Google Scholar 

  181. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007 Apr; 7 (4): 295–308.

    Article  PubMed  CAS  Google Scholar 

  182. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006 Apr 15; 66 (8): 3992–5.

    Article  PubMed  CAS  Google Scholar 

  183. Di Fiore F, Blanchard F, Charbonnier F, et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br J Cancer 2007 Apr 23; 96 (8): 1166–9.

    Article  PubMed  CAS  Google Scholar 

  184. VanDamme N, Deron P, VanRoy N, et al. Epidermal growth factor receptor and K-RAS status in two cohorts of squamous cell carcinomas. BMC Cancer 2010; 10: 189.

    Article  PubMed  CAS  Google Scholar 

  185. Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 2008 Mar 1; 14 (5): 1291–5.

    Article  PubMed  CAS  Google Scholar 

  186. Gossage L, Madhusudan S. Current status of excision repair cross complementing-group 1 (ERCC1) in cancer. Cancer Treat Rev 2007 Oct; 33 (6): 565–77.

    Article  PubMed  CAS  Google Scholar 

  187. Handra-Luca A, Hernandez J, Mountzios G, et al. Excision repair cross complementation group 1 immunohistochemical expression predicts objective response and cancer-specific survival in patients treated by cisplatin-based induction chemotherapy for locally advanced head and neck squamous cell carcinoma. Clin Cancer Res 2007 Jul 1; 13 (13): 3855–9.

    Article  PubMed  CAS  Google Scholar 

  188. Jun HJ, Ahn MJ, Kim HS, et al. ERCC1 expression as a predictive marker of squamous cell carcinoma of the head and neck treated with cisplatin-based concurrent chemoradiation. Br J Cancer 2008 Jul 8; 99 (1): 167–72.

    Article  PubMed  CAS  Google Scholar 

  189. Hayes M, Lan C, Yan J, et al. ERCC1 expression and outcomes in head and neck cancer treated with concurrent cisplatin and radiation. Anticancer Res 2011 Dec; 31 (12): 4135–9.

    PubMed  CAS  Google Scholar 

  190. Richards KL, Zhang B, Baggerly KA, et al. Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability. PLoS ONE 2009; 4 (3): e4941.

    Article  PubMed  CAS  Google Scholar 

  191. Lu D, Hoory T, Monie A, et al. Treatment with demethylating agent, 5-aza-2′-deoxycytidine enhances therapeutic HPV DNA vaccine potency. Vaccine 2009 Jul 9; 27 (32): 4363–9.

    Article  PubMed  CAS  Google Scholar 

  192. Nicolson GL. Bioregulators come of age in the control of tumor growth and metastasis. J Natl Cancer Inst 1996 Apr 17; 88 (8): 479–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grant no. R01 DE 15990. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Worsham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worsham, M.J., Ali, H., Dragovic, J. et al. Molecular Characterization of Head and Neck Cancer. Mol Diagn Ther 16, 209–222 (2012). https://doi.org/10.1007/BF03262210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262210

Keywords

Navigation