Skip to main content
Log in

Real-time PCR-based Fluorescent Assay for Quantitation of Human Papillomavirus Types 6, 11, 16, and 18

  • Original Research
  • Published:
Molecular Diagnosis Aims and scope Submit manuscript

Abstract

Background: Quantitation of human papillomavirus (HPV) DNA in clinical samples may yield important clinical information.

Methods and Results: We developed a 5′ exonuclease fluorescent probe assay for HPV quantitation that uses real-time PCR. The assay was optimized for HPV types 6 (HPV-6), -11, -16, and -18. A multiplex format was developed to quantify a cellular target of known iteration simultaneously with HPV quantitation, which controls for the amount of input DNA. Dilution series of target and heterologous templates were used to verify the assay. The assay was successfully used on fresh and PreservCyt-fixed cell lines, as well as cervical samples. The linear range of the assay is from 10 to 10 million copies. Intraclass correlations for HPV, actin, and globin assays ranged from 0.95 to 0.99, indicating the analytic precision of repeated measures.

Conclusion: The method is accurate over a large copy number range, reproducible, type specific, normalized for input DNA quantity, and applicable to PreservCytfixed material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Josefsson AM, Magnusson PK, Ylitalo N, et al.: Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: A nested case-control study. Lancet 2000;355:2189–2193

    Article  PubMed  CAS  Google Scholar 

  2. Swan DC, Tucker RA, Tortolero-Luna G, et al.: Human papillomavirus (HPV) DNA copy number is dependent on grade of cervical disease and HPV type. J Clin Microbiol 1999;37:1030–1034

    PubMed  CAS  Google Scholar 

  3. Ylitalo N, Sorensen P, Josefsson AM, et al.: Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ: A nested casecontrol study. Lancet 2000;355:2194–2198

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs MV, Walboomers JM, van Beek J, et al.: A quantitative polymerase chain reaction-enzyme immunoassay for accurate measurements of human papillomavirus type 16 DNA levels in cervical scrapings. Br J Cancer 1999;81:114–121

    Article  PubMed  CAS  Google Scholar 

  5. Josefsson A, Livak K, Gyllensten U: Detection and quantitation of human papillomavirus by using the fluorescent 5′ exonuclease assay. J Clin Microbiol 1999;37:490–96

    PubMed  CAS  Google Scholar 

  6. Serth J, Panitz F, Herrmann H, Alves J: Single-tube nested competitive PCR with homologous competitor for quantitation of DNA target sequences: Theoretical description of heteroduplex formation, evaluation of sensitivity, precision and linear range of the method. Nucleic Acids Res 1998;26:4401–4408

    Article  PubMed  CAS  Google Scholar 

  7. Swan DC, Tucker RA, Holloway BP, Icenogle JP: A sensitive, type-specific, fluorogenic probe assay for detection of human papillomavirus DNA. J Clin Microbiol 1997;35:886–891

    PubMed  CAS  Google Scholar 

  8. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K: Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 1995;4:357–362

    Article  PubMed  CAS  Google Scholar 

  9. Förster VT: Zwischenmolekkulare Energiewanderung and Fluorezenz. Ann Phys 1948;2:55–75

    Article  Google Scholar 

  10. Holland PM, Abramson RD, Watson R, Gelfand DH: Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc NatlAcad Sci U S A 1991;88:7276–7280

    Article  CAS  Google Scholar 

  11. Heid CA, Stevens J, Livak KJ, Williams PM: Real time quantitative PCR. Genome Res 1996;6:986–994

    Article  PubMed  CAS  Google Scholar 

  12. Lie YS, Petropoulos CJ: Advances in quantitative PCR technology: 5’ Nuclease assays. Curr Opin Biotechnol 1998;9:43–8

    Article  PubMed  CAS  Google Scholar 

  13. Orlando C, Pinzani P, Pazzagli M: Developments in quantitative PCR. Clin Chem Lab Med 1998;36:255–269

    Article  PubMed  CAS  Google Scholar 

  14. Higuchi R, Fockler C, Dollinger G, Watson R: Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Biotechnology (NY) 1993; 11:1026–1030

    Article  CAS  Google Scholar 

  15. Fleiss J: The design and analysis of clinical experiments. Wiley, New York, 1986

    Google Scholar 

  16. Lin LI: A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255–268

    Article  PubMed  CAS  Google Scholar 

  17. Cross NC: Quantitative PCR techniques and applications. Br J Haematol 1995,89:693–697

    Article  PubMed  CAS  Google Scholar 

  18. Diaco R: Practical considerations for the design of quantitative PCR assays. In Innis MA, Gelfand DH, Sninsky JJ: PCR strategies. Academic, San Diego, 1995, pp 84–108

    Chapter  Google Scholar 

  19. Leavitt J, Gunning P, Porreca P, Ng SY, Lin CS, Kedes L: Molecular cloning and characterization of mutant and wild-type human beta-actin genes. Mol Cell Biol 1984;4:1961–1969

    PubMed  CAS  Google Scholar 

  20. Delassus S: Quantification of cytokine transcripts using polymerase chain reaction. Eur Cytokine Netw 1997;8:239–244

    PubMed  CAS  Google Scholar 

  21. Kreuzer KA, Lass U, Landt O, et al.: Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem 1999;45:297–300

    PubMed  CAS  Google Scholar 

  22. Raff T, van der Giet M, Endemann D, Wiederholt T, Paul M: Design and testing of beta-actin primers for RT-PCR that do not co-amplify processed pseudogenes. Biotechniques 1997;23:456–460

    PubMed  CAS  Google Scholar 

  23. Wettstein FO, Sninsky JJ: Nucleic acid hybridization and unconventional bases. In Innis MA, Gelfand DH, Sninsky JJ: PCR Strategies. Academic, San Diego, 1995, pp 69–83

    Google Scholar 

  24. Berumen J, Casas L, Segura E, Amezcua JL, Garcia-Carranca A: Genome amplification of human papillomavirus types 16 and 18 in cervical carcinomas is related to the retention of E1/E2 genes. Int J Cancer 1994;56:640–645

    Article  PubMed  CAS  Google Scholar 

  25. Kalantari M, Karlsen F, Kristensen G, Holm R, Hagmar B, Johansson B: Disruption of the E1 and E2 reading frames of HPV 16 in cervical carcinoma is associated with poor prognosis. Int J Gynecol Pathol 1998;17:146–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Ann Tucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, R.A., Unger, E.R., Holloway, B.P. et al. Real-time PCR-based Fluorescent Assay for Quantitation of Human Papillomavirus Types 6, 11, 16, and 18. Molecular Diagnosis 6, 39–47 (2001). https://doi.org/10.1007/BF03262102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262102

Keywords

Navigation