Skip to main content
Log in

Minimal Residual Disease:How Low Do We Go?

  • Commentary
  • Original Research
  • Published:
Molecular Diagnosis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Pui CH, Campana D: New definition of remission in childhood acute lymphoblastic leukemia. Leukemia 2000;14:783–785

    Article  PubMed  CAS  Google Scholar 

  2. Weir EG, Cowan K, LeBeau P, Borowitz MJ: A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: Implications for residual disease detection. Leukemia 1999;13:558–567

    Article  PubMed  CAS  Google Scholar 

  3. Campana D, Coustan-Smith E: Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999;38:139–152

    Article  PubMed  CAS  Google Scholar 

  4. Bagg A, Kallakury BV: Molecular pathology of leukemia and lymphoma. Am J Clin Pathol 1999; 112:S76–S92

    PubMed  CAS  Google Scholar 

  5. Kallakury BV, Hartmann DP, Cossman J, Gootenberg JE, Bagg A: Post-therapy surveillance of B-cell precursor acute lymphoblastic leukemia. Value of polymerase chain reaction and limitations of flow cytometry. Am J Clin Pathol 1999;111:759–766

    CAS  Google Scholar 

  6. Nucifora G, Larson RA, Rowley JD: Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1993;82:712–715

    PubMed  CAS  Google Scholar 

  7. Hunger SP, Fall MZ, Camitta BM, et al.: E2A-PBX1chimeric transcript status at end of consolidation is not predictive of treatment outcome in childhood acute lymphoblastic leukemias with a t(l;19)(q23;p13): A Pediatric Oncology Group study. Blood 1998;91:1021–1028

    PubMed  CAS  Google Scholar 

  8. Rhoades KL, Hetherington CJ, Harakawa N, et al.: Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000;96:2108–2115

    PubMed  CAS  Google Scholar 

  9. Kondo M, Kudo K, Kimura H, et al.: Real-time quantitative reverse transcription-polymerase chain reaction for the detection of AML1-MTG8 fusion transcripts in t(8;21)-positive acute myelogenous leukemia. Leuk Res 2000;24:951–956

    Article  PubMed  CAS  Google Scholar 

  10. Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF: Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med 1997;336:317–323

    Article  PubMed  CAS  Google Scholar 

  11. Cave H, van der Werff ten Bosch J, Suciu S, et al.:Clinical significance of minimal residual disease inchildhood acute lymphoblastic leukemia. EuropeanOrganization for Research and Treatment of Cancer–Childhood Leukemia Cooperative Group. N Engl J Med 1998;339:591–598

    Article  PubMed  CAS  Google Scholar 

  12. van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al.: Prognostic value of minimal residual disease inacute lymphoblastic leukaemia in childhood. Lancet 1998;352:1731–1738

    Article  PubMed  Google Scholar 

  13. Coustan-Smith E, Behm FG, Sanchez J, et al.: Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998;351:550–554

    Article  PubMed  CAS  Google Scholar 

  14. Ciudad J, San Miguel JF, Lopez-Berges MC, et al.: Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1998;16:3774–3781

    PubMed  CAS  Google Scholar 

  15. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H: Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000;95:790–794

    PubMed  CAS  Google Scholar 

  16. Radich J, Gehly G, Lee A, et al.: Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 1997;89:2602–2609

    PubMed  CAS  Google Scholar 

  17. Cimino G, Elia L, Rapanotti MC, et al.: A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood 2000;95:96–101

    PubMed  CAS  Google Scholar 

  18. Grimwade D, Howe K, Langabeer S, Burnett A, Goldstone A, Solomon E: Minimal residual disease detection in acute promyelocytic leukemia by reverse-transcriptase PCR: Evaluation of PML-RAR alpha and RAR alpha-PML assessment in patients who ultimately relapse. Leukemia 1996;10:61–66

    PubMed  CAS  Google Scholar 

  19. Diverio D, Rossi V, Avvisati G, et al.: Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/ RAR alpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” Trial. Blood 1998; 92: 784–789

    PubMed  CAS  Google Scholar 

  20. Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH: Presenting white blood cell count nd kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: Result of the Randomized MRC Trial. Blood 1999;93:4131–4143

    PubMed  CAS  Google Scholar 

  21. Lo Coco F, Diverio D, Avvisati G, et al.: Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999;94:2225–2229

    PubMed  Google Scholar 

  22. Radich JP, Gehly G, Gooley T, et al.: Polymerase chain reaction detection of the BCR-ABL fusion transcript after allogeneic marrow transplantation for chronic myeloid leukemia: Results and implications in 346 patients. Blood 1995;85:2632–2638

    PubMed  CAS  Google Scholar 

  23. Olavarria E, Kanfer E, Szydlo R, et al.: Early detection of BCR-ABL transcripts by quantitative reverse transcriptase-polymerase chain reaction predictsoutcome after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 2001; 97: 1560–1565

    Article  PubMed  CAS  Google Scholar 

  24. Preudhomme C, Revillion F, Merlat A, et al.: Detection of BCR-ABL transcripts in chronic myeloidleukemia (CML) using a ‘real time’ quantitative RT-PCR assay. Leukemia 1999;13:957–964

    Article  PubMed  CAS  Google Scholar 

  25. Hochhaus A, Reiter A, Saussele S, et al.: Molecular heterogeneity in complete cytogenetic responders after interferon-alpha therapy for chronic myelogenous leukemia: Low levels of minimal residual disease are associated with continuing remission. German CML Study Group and the UK MRC CML Study Group. Blood 2000;95:62–66

    CAS  Google Scholar 

  26. Gribben JG, Freedman AS, Neuberg D, et al.: Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 1991;325:1525–1533

    Article  PubMed  CAS  Google Scholar 

  27. Lopez-Guillermo A, Cabanillas F, McLaughlin P, et al.: Molecular response assessed by PCR is the most important factor predicting failure-free survival in indolent follicular lymphoma: Update of the MDACC series. Ann Oncol 2000;11:S137–S140 (suppl 1)

    Article  Google Scholar 

  28. Voso MT, Pantel G, Weis M, et al.: In vivo depletion of B cells using a combination of high-dose cytosine arabinoside/mitoxantrone and rituximab for autografting in patients with non-Hodgkin’s lymphoma. Br J Haematol 2000; 109: 729–735

    Article  PubMed  CAS  Google Scholar 

  29. Ladetto M, Sametti S, Donovan JW, et al.: A validated real-time quantitative PCR approach shows a correlation between tumor burden and successful ex vivo purging in follicular lymphoma patients. Exp Hematol 2001;29:183–193

    Article  PubMed  CAS  Google Scholar 

  30. Limpens J, de Jong D, van Krieken JH, et al.: Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 1991;6:2271–2276

    PubMed  CAS  Google Scholar 

  31. Summers KE, Goff LK, Wilson AG, Gupta RK, Lister TA, Fitzgibbon J: Frequency of the Bcl-2/IgH rearrangement in normal individuals: Implications for the monitoring of disease in patients with follicular lymphoma. J Clin Oncol 2001;19:420–424

    PubMed  CAS  Google Scholar 

  32. Biernaux C, Sels A, Huez G, Stryckmans P: Very low level of major BCR-ABL expression in blood of some healthy individuals. Bone Marrow Transplant 1996;17:S45–S47 (suppl 3)

    PubMed  Google Scholar 

  33. Trumper L, Pfreundschuh M, Bonin FV, Daus H: Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br J Haematol 1998;103:1138–1144

    Article  PubMed  CAS  Google Scholar 

  34. Pongers-Willemse MJ, Seriu T, Stolz F, et al.: Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia 1999;13:110–118

    Article  PubMed  CAS  Google Scholar 

  35. van Dongen JJ, Macintyre EA, Gabert JA, et al.: Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia 1999;13:1901–1928

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Bagg MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagg, A. Minimal Residual Disease:How Low Do We Go?. Molecular Diagnosis 6, 155–160 (2001). https://doi.org/10.1007/BF03262048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262048

Navigation