Skip to main content

First Workshop on Computational Methods in Pharmacovigilance held during the Medical Informatics in Europe (MIE) Conference, Pisa, Italy, 29 August 2012

This is a preview of subscription content, access via your institution.

References

  1. Bergvall T, Dahlberg G, Cappelli B, et al. Fuzzy text matching to identify known adverse drug reactions [abstract]. Pharmacoepidemiol Drug Saf 2011; 20: S143

    Google Scholar 

  2. de Bruijn B, Cherry C, Kiritchenko S, et al. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J Am Med Inform Assoc 2011 Sep; 18(5): 557–62

    PubMed Central  PubMed  Article  Google Scholar 

  3. http://www.imi-protect.eu/methodsRep.shtml

References

  1. Trifirò G, et al. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor? Pharmacoepidemiol Drug Saf 2009; 18(12): 1176–84

    PubMed  Article  Google Scholar 

  2. Alvarez Y, et al. Validation of statistical signal detection procedures in EudraVigilance post-authorization data: a retrospective evaluation of the potential for earlier signalling. Drug Saf 2010; 33(6): 475–87

    PubMed  Article  Google Scholar 

  3. Norén GN, Hopstadius J, Bate A. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Stat Methods Med Res. Epub 2011 Jun 29

References

  1. Mozzicato P. StandardisedMedDRA queries: their role in signal detection. Drug Saf 2007; 30(7): 617–9

    PubMed  Article  Google Scholar 

  2. Alecu I, Bousquet C, Jaulent MC. A case report: using SNOMED CT for grouping adverse drug reactions terms. BMC Med Inform Decis Mak 2008 Oct; 8 Suppl 1: S4

    PubMed Central  PubMed  Article  Google Scholar 

References

  1. Fescharek R, Kübler J, Elsasser U, et al. Medical dictionary for regulatory activities (MedDRA): data retrieval and presentation. Int J Pharm Med 2004; 18(5): 259–69

    Article  Google Scholar 

  2. Jacquemin C. Syntagmatic and paradigmatic representations of term variation. ACL 1999; 341-8

  3. Pearson RK, Hauben M, Goldsmith DI, et al. Influence of the MedDRA hierarchy on pharmacovigilance data mining results. Int J Med Inform 2009; 78(12): e97–103

    PubMed  Article  Google Scholar 

References

  1. Gurulingappa H, Rajput A-M, Roberts A, et al. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J Biomed Inform 2012; 45(5): 885–92

    PubMed  Article  Google Scholar 

  2. Gurulingappa H, Fluck J, Hofmann-Apitius M, et al. Identification of adverse drug event assertive sentences in medical case reports. International Workshop on Knowledge Discovery in Health Care and Medicine (KDHCM) online proceedings; 2011 Sep 9; Athens

    Google Scholar 

  3. Gurulingappa H, Rajput A-M, Toldo L. Extraction of adverse drug effects from medical case reports. International Conference Biomedical Ontologies (ICBO 2011 VDOSME) online proceedings; 2012 Jul 22–25; Graza

    Google Scholar 

  4. Toldo L, Bhattacharya S, Gurulingappa H. Automated identification of adverse events from case reports using machine learning. XXIV Conference of the European Federation for Medical Informatics MIE 2012 ‘Workshop on Computational Methods in Pharmacovigilance’; 2012 Aug 29; Pisa

    Google Scholar 

References

  1. Stricker BH, Psaty BM. Detection, verification, and quantification of adverse drug reactions. BMJ 2004; 329: 44–7

    PubMed Central  PubMed  Article  Google Scholar 

  2. Garcelon N, Mougin F, Bousquet C, et al. Evidence in pharmacovigilance: extracting adverse drug reactions articles from MEDLINE to link them to case databases. Stud Health Technol Inform 2006; 124: 528–33

    PubMed  Google Scholar 

  3. Amardeilh F, Bousquet C, Guillemin-Lanne S, et al. A knowledge management platform for documentation of case reports in pharmacovigilance. Stud Health Technol Inform. 2009; 150: 517–21

    PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and Permissions

About this article

Cite this article

First Workshop on Computational Methods in Pharmacovigilance held during the Medical Informatics in Europe (MIE) Conference, Pisa, Italy, 29 August 2012. Drug Saf 35, 1191–1200 (2012). https://doi.org/10.1007/BF03262009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262009