Skip to main content
Log in

Valproate-Associated Hepatotoxicity and its Biochemical Mechanisms

  • Adverse Drag Experience Review
  • Published:
Medical Toxicology and Adverse Drug Experience Aims and scope Submit manuscript

Summary

Intake of the anticonvulsant drug valproic acid, or its sodium salt, has been associated with occasional instances of severe and sometimes fatal hepatotoxicity. Probably at least 80 cases have occurred worldwide. The syndrome affects perhaps 1 in 10,000 persons taking the drug, and usually develops in the early weeks or months of therapy. Most instances have involved children, usually those receiving more than 1 anticonvulsant. Multiple cases have occurred in 2 families. The typical presentation is of worsening epilepsy, increasing depression of consciousness, and progressive clinical and biochemical evidence of liver failure. The liver has sometimes shown hepatocyte necrosis, and on other occasions widespread microvesicular steatosis, while cholestatic changes have also occurred. The appearances are interpreted as consistent with a drug toxicity reaction.

During the hepatotoxicity increased amounts of unsaturated metabolites of valproate, notably 4-en-valproate, have been found in blood and urine. In 4 cases there has been evidence of impaired β-oxidation of valproate with, in 1 case, accumulation of isomers of valproate glucuronide caused by intramolecular rearrangement of the conjugate. There are molecular structural similarities between 4-en-valproate and 2 known hepatotoxins (4-en-pentanoate and methylenecyclopropylacetic acid, the latter being responsible for hypoglycin poisoning). There are also clinical and histopathological similarities between valproate hepatotoxicity and both hypoglycin poisoning and certain spontaneous disorders of isoleucine metabolism (one pathway ofvalproate metabolism is analogous to oxidative degradation of isoleucine). Unsaturated metabolites of valproate, in particular 4-en-valproate, may contribute to the hepatotoxicity of the drug. However, since the hepatotoxicity appears to involve an element of idiosyncrasy, the primary defect in some cases may be an inherited or acquired deficiency in the drug’s β-oxidation. This defect may divert valproate metabolism towards ω-oxidation, with increased formation of the toxin 4-en-valproate, but may also allow increased formation of a toxic metabolite derived from isoleucine, since β-oxidation of isoleucine derivatives will also be impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott FS, Kassam J, Orr JM, Farrell K. The effect of aspirin on valproic acid metabolism. Clinical Pharmacology and Therapeutics 40: 94–110, 1986

    PubMed  CAS  Google Scholar 

  • Acheampong A, Abbott FS. Synthesis and stereochemical determination of diunsaturated valproic acid analogs including its major diunsaturated metabolite. Journal of Lipid Research 26: 1002–1008, 1985

    PubMed  CAS  Google Scholar 

  • Allen RJ, Coulter DL. Valproic acid induced pancreatitis in children. Pediatrics 65: 1194–1195, 1980

    PubMed  CAS  Google Scholar 

  • Batalden PB, Van Dyne BJ, Lloyd J. Pancreatitis associated with valproic acid therapy. Pediatrics 64: 520–522, 1979

    PubMed  CAS  Google Scholar 

  • Becker C-M, Harris RA. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Archives of Biochemistry and Biophysics 223: 381–392, 1983

    PubMed  CAS  Google Scholar 

  • Benavides J, Martin A, Ugarte M, Valdivieso F. Inhibition by valproic acid of pyruvate uptake by brain mitochondria. Biochemical Pharmacology 31: 1633–1636, 1982

    PubMed  CAS  Google Scholar 

  • Bjorge SM, Baillie TA. Inhibition of medium-chain fatty acid β-oxidation in vitroby valproic acid and its unsaturated metabolite, 2-n-propyl-4-pentenoic acid. Biochemical and Biophysical Research Communications 132: 245–252, 1985

    PubMed  CAS  Google Scholar 

  • Böhles H, Richter K, Wagner-Thiessen E, Schäfer H. Decreased serum carnitine in valproate-induced Reye syndrome. European Journal of Paediatrics 139: 185–186, 1982

    Google Scholar 

  • Camfield PR, Bagnell P, Camfield CS, Tibbies JAR. Pancreatitis due to valproic acid. Lancet 1: 1198–1199, 1979

    PubMed  CAS  Google Scholar 

  • Chapman A, Keane PE, Meldrum BS, Simiand J, Vernieres JC. Mechanism of anticonvulsant action of valproate. Progress in Neurobiology 19: 315–359, 1982

    PubMed  CAS  Google Scholar 

  • Coude FX, Grimber G, Pelet A, Benoit Y. Action of the anti-epileptic drug, valproic acid, on fatty acid oxidation in isolated rat hepatocytes. Biochemical and Biophysical Research Communications 115: 730–736, 1983

    PubMed  CAS  Google Scholar 

  • Coulter DL. Carnitine deficiency: a possible mechanism for valproate hepatotoxicity. Lancet 1: 689, 1984

    PubMed  CAS  Google Scholar 

  • Coulter DL, Allen RJ. Secondary hyperammonaemia: a possible mechanism for valproate encephalopathy. Lancet 1: 1310–1311, 1980

    PubMed  CAS  Google Scholar 

  • Coulter DL, Allen RJ. Hyperammonemia with valproic acid therapy. Journal of Pediatrics 99: 317–319, 1981

    PubMed  CAS  Google Scholar 

  • Dickinson RG, Bassett ML, Searle J, Tyrer JH, Eadie MJ. Valproate hepatotoxicity: a review and report of two instances in adults. Clinical and Experimental Neurology 21: 79–91, 1985a

    PubMed  CAS  Google Scholar 

  • Dickinson RG, Harland RC, Ilias AM, Rodgers RM, et al. Disposition of valproic acid in the rat: dose-dependent metabolism, distribution, enterohepatic recirculation and choleretic effect. Journal of Pharmacology and Experimental Therapeutics 211: 583–595, 1979

    PubMed  CAS  Google Scholar 

  • Dickinson RG, Hooper WD, Eadie MJ. pH-Dependent rearrangement of the biosynthetic ester glucuronide of yalproic acid to β-glucuronidase-resistant forms. Drug Metabolism and Disposition 12: 247–252, 1984

    PubMed  CAS  Google Scholar 

  • Dickinson RG, Kluck RM, Hooper WD, Patterson M, Chalk JB, et al. Rearrangement of valproate glucuronide in a patient with drug-associated hepatobiliary and renal dysfunction. Epilepsia 26: 589–593, 1985b

    PubMed  CAS  Google Scholar 

  • Dreifuss FE, Santilli N, Langer DH, Sweeney KP, Moline KA, et al. Valproic acid hepatic fatalities: a retrospective review. Neurology 37: 379–385, 1987

    PubMed  CAS  Google Scholar 

  • Ferrandes B, Eymard P. Metabolism of valproate sodium in rabbit, rat, dog and man. Epilepsia 18: 169–182, 1977

    PubMed  CAS  Google Scholar 

  • Gastaut H, Noel P. A case of fatal toxic hepatitis: recommendations for the administration of sodium valproate. Epilepsia 22: 711–713, 1981

    PubMed  CAS  Google Scholar 

  • Gerber N, Dickinson RG, Harland RC, Lynn RK, Houghton D, et al. Reye like syndrome associated with valproic acid therapy. Journal of Pediatrics 95: 142–144, 1979

    PubMed  CAS  Google Scholar 

  • Glasgow AM, Chase HP. Production of the features of Reye’s syndrome in rats with 4-pentenoic acid. Pediatric Research 9: 133–138, 1975

    PubMed  CAS  Google Scholar 

  • Gompertz D, Tippett P, Bartlett K, Baillie T. Identification of urinary metabolites of sodium dipropylacetate in man: potential sources of interference in organic acid screening procedures. Clinica Chimica Acta 74: 153–160, 1977

    CAS  Google Scholar 

  • Gram L. Hepatic toxicity of valproate: reflections on the pathogenesis and proposal for an international collaborative registration. In Oxley et al. (Eds) Chronic toxicity of antiepileptic drugs, pp. 69–78, Raven Press, New York, 1983

    Google Scholar 

  • Granneman GR, Marriott TB, Wang SI, Sennello LT, Hagen NS, et al. Aspects of the dose-dependent metabolism of valproic acid. In Levy et al. (Eds) Metabolism of antiepileptic drugs, pp. 97–104, Raven Press, New York, 1984a

    Google Scholar 

  • Granneman GR, Wang S-I, Kesterson JW, Machinist JM. The hepatotoxicity of valproic acid and its metabolites in rats, II: intermediary and valproic acid metabolism. Hepatology 4: 1153–1158, 1984b

    PubMed  CAS  Google Scholar 

  • Granneman GR, Wang SI, Machinist JM, Kesterson JW. Aspects of the metabolism of valproic acid. Xenobiotica 14: 375–387, 1984c

    PubMed  CAS  Google Scholar 

  • Gugler R, von Unruh GE. Clinical pharmacokinetics of valproic acid. Clinical Pharmacokinetics 5: 67–83, 1980

    PubMed  CAS  Google Scholar 

  • Haas R, Stumpf DA, Bergen BJ, Parks JK, Eguren L. Inhibition of oxidative phosphorylation by sodium valproate. Neurology 30: 420, 1980

    Google Scholar 

  • Haas R, Stumpf DA, Parks JK, Eguren L. Inhibitory effects of sodium valproate on oxidative phosphorylation. Neurology 31: 1473–1476, 1981

    PubMed  CAS  Google Scholar 

  • Haidukewych D, John G. Chronic valproic acid and coepileptic drug therapy and incidence of increases in serum liver enzymes. Therapeutic Drug Monitoring 8: 407–410, 1986

    PubMed  CAS  Google Scholar 

  • Hayasaka K, Takahashi I, Kobayashi Y, Iinuma K, Narisawa K, et al. Effects of valproate on biogenesis and function of liver mitochondria. Neurology 36: 351–356, 1986

    PubMed  CAS  Google Scholar 

  • Heinemeyer G, Nau H, Hildebrand AG, Roots I. Oxidation and glucuronidation of valproic acid in male rats — influence of phenobarbital, 3-methylcholanthrene, β-naphthoflavone and clofibrate. Biochemical Pharmacology 34: 133–139, 1985

    PubMed  CAS  Google Scholar 

  • Hjelm M, De Silva LVK, Seakins JWT, Oberholzer VG, Rolles CJ. Evidence of inherited urea cycle defect in a case of fatal valproate toxicity. British Medical Journal 292: 23–24, 1986a

    PubMed  CAS  Google Scholar 

  • Hjelm M, Oberholzer V, Seakins J, Thomas S, Kay JDS. Valproate-induced inhibition of urea synthesis and hyperammonaemia in healthy subjects. Lancet 2: 859, 1986b

    PubMed  CAS  Google Scholar 

  • Horie S, Suga T. Enhancement of peroxisomal β-oxidation in the liver of rats and mice treated with valproic acid. Biochemical Pharmacology 34: 1357–1362, 1985

    PubMed  CAS  Google Scholar 

  • Isom JB. On the toxicity of valproic acid. American Journal of Diseases of Children 138: 901–903, 1984

    PubMed  CAS  Google Scholar 

  • Isom JB, Gerber N, Lynn RK, Harland RC, Kaufman SN, et al. Pharmacokinetic studies of valproic acid: serum half-life and tissue distribution in 2 children dying in acute hepatic failure. Annals of Neurology 6: 178, 1979

    Google Scholar 

  • Jakobs C, Loscher W. Identification of metabolites of valproic acid in serum of humans, dog, rat and mouse. Epilepsia 19: 591–602, 1978

    PubMed  CAS  Google Scholar 

  • Jeavons PM. Hepatotoxicity of antiepileptic drugs. In Oxley et al. (Eds) Chronic toxicity of antiepileptic drugs, pp. 1–45, Raven Press, New York, 1983

    Google Scholar 

  • Jeavons PM. Non-dose-related side effects of valproate. Epilepsia 25 (Suppl. 1): S5O–S55, 1984

    Google Scholar 

  • Karlsen RL, Kett K, Henriksen OE. Intoxication with sodium valproate. Acta Medica Scandinavica 213: 405–406, 1983

    PubMed  CAS  Google Scholar 

  • Kay JDS, Hilton-Jones D, Hyman N. Valproate toxicity and ornithine carbamoyltransferase deficiency. Lancet 2: 1283–1284, 1986

    PubMed  CAS  Google Scholar 

  • Keene D, Humphreys P, Carpenter B, Reicher J. Poster presentation at Epilepsy International Congress, Kyoto, 1981. Cited by Jeavons PM. Hepatotoxicity of antiepileptic drugs. In Oxley et al. (Eds) Chronic toxicity of antiepileptic drugs, Raven Press, New York, 1983

    Google Scholar 

  • Kerwin RW, Taberner PV. The mechanism of action of sodium valproate. General Pharmacology 12: 71–75, 1981

    PubMed  CAS  Google Scholar 

  • Kesterson JW, Granneman GR, Machinist JM. The hepatotoxicity of valproic acid and its metabolites in rats. I. Toxicologie, biochemical and histopathologic studies. Hepatology 4: 1143–1152, 1984

    CAS  Google Scholar 

  • Keulen FP, Kochen W. Hepatotoxizitat unter Valproinsaure behandlung. Klinische Pädiatrie 197: 431–436, 1985

    PubMed  CAS  Google Scholar 

  • Kochen W, Imbeck H, Jakobs C. Untersuchungen uber die Ausscheidung von Metaboliten de Valproinsaure in Urin der Ratte und das Menschen. Arzneimittel Forschung 27: 1090–1099, 1977

    PubMed  CAS  Google Scholar 

  • Kochen W, Scheffner H. On unsaturated metabolites of the valproic acid (VPA) in serum of epileptic children. In Johannessen et al. (Eds) Antiepileptic therapy: advances in drug monitoring, pp. 111–120, Raven Press, New York, 1980

    Google Scholar 

  • Kochen W, Schneider A, Ritz A. Abnormal metabolism of valproic acid in fatal hepatic failure. European Journal of Pediatrics 141: 30–35, 1983

    PubMed  CAS  Google Scholar 

  • Kochen W, Sprunck HP, Tauscher B, Klemens M. Five doubly unsaturated metabolites of valproic acid in urine and plasma of patients on valproic acid therapy. Journal of Clinical Chemistry and Clinical Biochemistry 22: 309–317, 1984

    CAS  Google Scholar 

  • Kochi H, Hayasaka K, Hiraga K, Kikuchi G. Reduction of the level of the glycine cleavage system in the rat liver resulting from administration of dipropylacetic acid: an experimental approach to hyperglycinemia. Archives of Biochemistry and Biophysics 198: 589–597, 1979

    PubMed  CAS  Google Scholar 

  • Kuhara T, Hirakata Y, Yamada S, Matsumoto I. Metabolism of sodium dipropylacetate in humans. European Journal of Drug Metabolism and Pharmacokinetics 3: 171–177, 1978

    CAS  Google Scholar 

  • Kuhara T, Inoue Y, Matsumoto M, Shinka T, Matsumoto I, et al. Altered metabolic profiles of valproic acid in a patient with Reye’s syndrome. Clinica Chimica Acta 145: 135–142, 1985

    CAS  Google Scholar 

  • Kuhara T, Matsumoto I. Metabolism of branched medium chain length fatty acid, I: w-oxidation of sodium dipropylacetate in rats. Biomedical Mass Spectrometry 1: 291–294, 1974

    PubMed  CAS  Google Scholar 

  • Laub MC. Nutritional influence of serum ammonia in young patients receiving sodium valproate. Epilepsia 27: 55–59, 1986

    PubMed  CAS  Google Scholar 

  • Laub MC, Paetzke-Brunner I, Jaeger G. Serum carnitine during valproic acid therapy. Epilepsia 27: 559–562, 1986

    PubMed  CAS  Google Scholar 

  • Lewis JH, Zimmerman HJ, Garrett CT, Rosenberg E. Valproate-induced hepatic steatogenesis in rats. Hepatology 2: 870–873, 1982

    PubMed  CAS  Google Scholar 

  • Loscher W. Concentration of metabolites of valproic acid in plasma of epileptic patients. Epilepsia 22: 169–178, 1981

    PubMed  CAS  Google Scholar 

  • Loscher W, Bohme G, Schafer H, Kochen W. Effect of metabolites of valproic acid on the metabolism of G ABA in brain and brain nerve endings. Neuropharmacology 20: 1187–1192, 1981

    PubMed  CAS  Google Scholar 

  • Loscher W, Schmidt D. Increase of human plasma GABA by sodium valproate. Epilepsia 21: 611–615, 1980

    PubMed  CAS  Google Scholar 

  • Martin-Gallardo A, Rodriguez P, Lopez M, Benavides J, Ugarte M. Effect of dipropylacetate on the glycine cleavage enzyme system and glycine levels: a possible experimental approach to non-ketotic hyperglycinemia. Biochemical Pharmacology 16: 2877–2882, 1983

    Google Scholar 

  • Matsumoto I, Kuhara T, Inoue Y, Matsumoto M, Ohkura T. Differential diagnosis for hepatopathy in five patients with valproate therapy. Proceedings of the 34th Annual Conference on Mass Spectrometry and Allied Topics, June 8–13, 1986, Cincinnati, Ohio, pp. 925–926, 1986

  • Matsumoto I, Kuhara T, Shinka T, Inoue Y, Matsumoto M. Effect of valproic acid on amino acid and organic acid metabolism. In Levy et al. (Eds) Metabolism of antiepileptic drugs, pp. 169–174, Raven Press, New York, 1984

    Google Scholar 

  • Matsumoto I, Kuhara T, Yoshino M. Metabolism of branched chain medium length fatty acid II: β-oxidation of sodium dipropylacetate in rats. Biomedical Mass Spectrometry 3: 235–240, 1976a

    PubMed  CAS  Google Scholar 

  • Matsumoto I, Kuhara T, Yoshino M. The effect of isoleucine on the metabolism of sodium dipropylacetate in rats. Advances in Mass Spectrometry in Biochemistry and Medicine 1: 17–26, 1976b

    CAS  Google Scholar 

  • Millington DS, Bohan TP, Roe CP, Yergey AL, Liberato DJ. Valproylcarnitine: a novel drug metabolite identified by fast atom bombardment and thermospray liquid chromatography-mass spectrometry. Clinica Chimica Acta 145: 69–76, 1985

    CAS  Google Scholar 

  • Moore JR, Williams THC, Talbot IC, Tanner MS. Heterozygous α1-antitrypsin deficiency and valproate hepatotoxicity. Lancet 1: 221, 1984

    PubMed  CAS  Google Scholar 

  • Mortensen PB. Inhibition of fatty acid oxidation by valproate. Lancet 2: 856–857, 1980

    PubMed  CAS  Google Scholar 

  • Mortensen PB, Gregersen N, Kocvraa S, Christensen E. The occurrence of C6-C10-dicarboxylic acids in urine from patients and rats treated with dipropylacetate. Biochemical Medicine 24: 153–161, 1980a

    PubMed  CAS  Google Scholar 

  • Mortensen PB, Kolvraa S, Christensen E. Inhibition of the glycine cleavage system: hyperglycinemia and hyperglycinuria caused by valproic acid. Epilepsia 21: 563–569, 1980b

    PubMed  CAS  Google Scholar 

  • Nau H, Merker H-J, Brendel K, Gansan C, Hauser I, et al. Disposition, embryotoxicity and teratogenicity of valproic acid in the mouse as related to man. In Levy et al. (Eds) Metabolism of antiepileptic drugs, pp. 85–93, Raven Press, New York, 1984

    Google Scholar 

  • Nau H, Loscher W. Valproic acid and metabolites: pharmacological and toxicological studies. Epilepsia 25 (Suppl. 1): S14–S22, 1984

    PubMed  Google Scholar 

  • Nau H, Wittfoht W, Schafer H, Jakobs C, Rating D, et al. Valproic acid and several metabolites: quantitative determination in serum, urine, breast milk and tissue by gas chromatographymass spectrometry using selected ion monitoring. Journal of Chromatography 226: 69–78, 1981

    PubMed  CAS  Google Scholar 

  • Ohtani Y, Endo F, Matsuda I. Carnitine deficiency and hyper-ammonemia associated with valproic acid therapy. Journal of Pediatrics 101: 782–785, 1982

    PubMed  CAS  Google Scholar 

  • Orr JM, Abbott FS, Farrell K, Ferguson S, Sheppard I, et al. Interaction between valproic acid and aspirin in epileptic children: serum protein binding and metabolic effects. Clinical Pharmacology and Therapeutics 31: 642–649, 1982

    PubMed  CAS  Google Scholar 

  • Panesar S, Orr J, Burton R, Farrell K. Effect of carbamazepine on valproic acid metabolism. Epilepsia 27: 591, 1986

    Google Scholar 

  • Powell-Jackson PR, Tredger JM, Williams R. Hepatotoxicity to sodium valproate: a review. Gut 25: 673–681, 1984

    PubMed  CAS  Google Scholar 

  • Prickett KS, Baillie TA. Metabolism of valproic acid by hepatic microsomal cytochrome P450. Biochemical and Biophysical Research Communications 122: 1166–1173, 1984

    PubMed  CAS  Google Scholar 

  • Prickett KS, Baillie TA. Metabolism of unsaturated derivatives of valproic acid in rat liver microsomes and destruction of cytochrome P-450. Drug Metabolism and Disposition 14: 221–229, 1986

    PubMed  CAS  Google Scholar 

  • Rawat S, Borkowski WJ, Swick HM. Valproic acid and secondary hyperammonemia. Neurology 31: 1173–1174, 1981

    PubMed  CAS  Google Scholar 

  • Rettenmeier AW, Gordon WP, Prickett KS, Levy RH, Baillie TA. Biotransformation and pharmacokinetics in the rhesus monkey of 2-n-propyl-4-pentenoic acid, a toxic metabolite of valproic acid. Drug Metabolism and Disposition 14: 454–464, 1986a

    PubMed  CAS  Google Scholar 

  • Rettenmeier AW, Gordon WP, Prickett KS, Levy RH, Lockard JS, et al. Metabolic fate of valproic acid in the rhesus monkey: formation on a toxic metabolite, 2-n-propyl-4-pentenoic acid. Drug Metabolism and Disposition 14: 443–453, 1986b

    PubMed  CAS  Google Scholar 

  • Rettenmeier AW, Prickett KS, Gordon WP, Bjorge SM, Chang S-L, et al. Studies on the biotransformation in the perfused rat liver on 2-n-propyl-4-pentenoic acid, a metabolite of the antiepileptic drug valproic acid. Drug Metabolism and Disposition 15: 81–96, 1985

    Google Scholar 

  • Rettie AE, Rettenmeier AW, Bayer BK, Baillie TA, Juchau MR. Valproate hydroxylation by human fetal tissues and embryotoxicity of metabolites. Clinical Pharmacology and Therapeutics 40: 172–177, 1986

    PubMed  CAS  Google Scholar 

  • Rettie AE, Rettenmeier AW, Howald WN, Baillie TA. Cytochrome P-450-catalysed formation of Δ4-VPA, a toxic metabolite of valproic acid. Science 235: 890–893, 1987

    PubMed  CAS  Google Scholar 

  • Rogiers A, Vandenberghe Y, Vercruysse A. Inhibition of gluconeogenesis by sodium valproate and its metabolites in isolated rat hepatocytes. Xenobiotica 15: 759–765, 1985

    PubMed  CAS  Google Scholar 

  • Rosenberg E. Disorders of propionate and methylmalonate metabolism. In Stanbury et al. (Eds) The metabolic basis of inherited disease, 5th ed., pp. 474–497, McGraw-Hill, New York, 1983

    Google Scholar 

  • Rothner AD. Valproic acid: a review of 23 fatal cases. Annals of Neurology 10: 287, 1981

    Google Scholar 

  • Rumbach L, Warter JM, Rendon A, Marescaux C, Micheletti G, et al. Inhibition of oxidative phosphorylation in hepatic and cerebral mitochondria of sodium valproate-treated rats. Journal of the Neurological Sciences 61: 417–423, 1983

    PubMed  CAS  Google Scholar 

  • Sawaya MCB, Horton RW, Meldrum BS. Effects of anticonvulsant drugs on the cerebral enzymes metabolising GABA. Epilepsia 16: 649–655, 1975

    PubMed  CAS  Google Scholar 

  • Schafer H, Luhrs R. Gas Chromatographie determination of the valproic acid metabolite artifacts, heptanone-3, 4- and 5-hydroxyvalproic acid lactone. Arzneimittel-Forschung 28: 657–662, 1978

    PubMed  CAS  Google Scholar 

  • Schafer H, Luhrs R. Responsibility of the metabolic pattern for potential side-effects in the rat being treated with valproic acid, 2-propylpenten-2-oic acid, and 2-propylpenten-4-oic acid. In Levy et al. (Eds) Metabolism of antiepileptic drugs, pp. 73–81, Raven Press, New York, 1984a

    Google Scholar 

  • Schafer H, Luhrs R. Determination of 4,5-dihydroxy valproate, a target molecule in a potentially pathological valproate metabolism. Ninth European Workshop on Drug Metabolism, Pont-a-Mousson, 1984b

  • Scheffner D. Fatal liver failure in children on valproate. Lancet 2: 511, 1986

    PubMed  CAS  Google Scholar 

  • Schmid RD. Propionic acid and dipropylacetic acid in the urine of patients treated with dipropylacetic acid. Clinica Chimica Acta 74: 39–42, 1977

    CAS  Google Scholar 

  • Schnabel R, Rambeck B, Janssen F. Fatal intoxication with sodium valproate. Lancet 1: 221–222, 1984

    PubMed  CAS  Google Scholar 

  • Sherratt HSA, Osmundsen H. On the mechanisms of some pharmacological actions of the hypoglycemic toxins hypoglycin and pent-4-enoic acid: a way out of the confusion. Biochemical Pharmacology 25: 743–750, 1976

    PubMed  CAS  Google Scholar 

  • Simila S, Von Wendt L, Linna S-L. Dipropylacetate and aminoaciduria. Journal of the Neurological Sciences 45: 83–86, 1980

    PubMed  CAS  Google Scholar 

  • Simon D, Penry JK. Sodium di-n-propylacetate (DPA) in the treatment of epilepsy. Epilepsia 16: 549–573, 1975

    PubMed  CAS  Google Scholar 

  • Stumpf DA, Parker Jr WD, Angelini C. Carnitine deficiency, organic acidemias and Reye’s syndrome. Neurology 35: 1041–1045, 1985

    PubMed  CAS  Google Scholar 

  • Stricker BHC, Spoelstra P. Drug-induced hepatic injury, pp. 84–87, Elsevier, Amsterdam, 1985

    Google Scholar 

  • Suchy FJ, Balistreri WF, Buchino JJ, Sondheimer JM, Bates SR, et al. Acute hepatic failure associated with the use of sodium valproate. New England Journal of Medicine 300: 962–966, 1979

    PubMed  CAS  Google Scholar 

  • Sussman NM, McLain LW. A direct hepatotoxic effect of valproic acid. Journal of the American Medical Association 242: 1173–1174, 1979

    PubMed  CAS  Google Scholar 

  • Tanaka K, Rosenberg E. Disorders of branched chain amino acid and organic acid metabolism. In Stanbury et al. (Eds) The metabolic basis of inherited disease, 5th ed., pp. 440–473, McGraw Hill, New York, 1983

    Google Scholar 

  • Thayer WS. Inhibition of mitochondrial fatty acid oxidation in pentenoic acid — induced fatty liver: a possible model for Reye’s syndrome. Biochemical Pharmacology 33: 1187–1194, 1984

    PubMed  CAS  Google Scholar 

  • Tripp JH, Hargreaves T, Anthony PP, Searle JF, Miller P, et al. Sodium valproate and ornithine carboxyl transferase deficiency. Lancet 1: 1165–1166, 1981

    PubMed  CAS  Google Scholar 

  • Turnbull DM, Bone AJ, Bartlett K, Koundakjian PP, Sherratt HSA. The effect of valproate on intermediary metabolism of isolated rat hepatocytes and intact rats. Biochemical Pharmacology 32: 1887–1892, 1983

    PubMed  CAS  Google Scholar 

  • Turnbull DM, Dick DJ, Wilson L, Sherratt HSA, Alberti KGMM. Valproate causes metabolic disturbance in normal man. Journal of Neurology, Neurosurgery and Psychiatry 49: 405–410, 1986

    CAS  Google Scholar 

  • Van der Branden C, Roels F. Perioxisomal β-oxidation and sodium valproate. Biochemical Pharmacology 34: 2147–2149, 1985

    PubMed  Google Scholar 

  • Vree TB, van der Kleijn E. Pharmacokinetics and renal excretion of 2-n-propyl pentanoate (Depakine) in man, dog and Rhesus monkey. Pharmaceutisch Weekblad 112: 290–292, 1977

    CAS  Google Scholar 

  • Warter JM, Brandt C, Marescaux C, Rumbach L, Micheletti G, et al. The renal origin of sodium valproate-induced hyperammonemia in fasting humans. Neurology 33: 1136–1140, 1983a

    PubMed  CAS  Google Scholar 

  • Warter JM, Imler M, Marescaux C, Chabrier G, Rumbach L, et al. Sodium valproate-induced hyperammonemia in the rat: role of the kidney. European Journal of Pharmacology 87: 177–182, 1983b

    PubMed  CAS  Google Scholar 

  • Williams CA, Tiefenbach S, McReynolds JW. Valproic acid-induced hyperammonemia in mentally retarded adults. Neurology 34: 550–553, 1984

    PubMed  CAS  Google Scholar 

  • Willmore LJ, Wilder BJ, Bruni J, Villarreal, HJ. Effect of valproic acid on hepatic function. Neurology 28: 961–964, 1978

    PubMed  CAS  Google Scholar 

  • Wolf B, Paulsen EP, Dreifuss FE. Valproate in the treatment of seizures associated with propionic acidemia. Pediatrics 67: 162–163, 1981

    PubMed  CAS  Google Scholar 

  • Zaccara G, Campostrini R, Paganini M, Moroni F, Valenza T, et al. Acute changes of blood ammonia may predict short-term adverse effects of valproic acid. Neurology 34: 1519–1521, 1984

    PubMed  CAS  Google Scholar 

  • Zafrani ES, Berthelot P. Sodium valproate in the induction of unusual hepatotoxicity. Hepatology 2: 648–649, 1982

    PubMed  CAS  Google Scholar 

  • Zimmerman HJ, Ishak KG. Valproate-induced hepatic injury: analyses of 23 fatal cases. Hepatology 2: 591–597, 1982

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eadie, M.J., Hooper, W.D. & Dickinson, R.G. Valproate-Associated Hepatotoxicity and its Biochemical Mechanisms. Dis-Manage-Health-Outcomes 3, 85–106 (1988). https://doi.org/10.1007/BF03259935

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259935

Keywords

Navigation