Skip to main content

The Beta Titanium Alloys

Abstract

The beta titanium alloys offer many advantages in terms of processing, mechanical properties, and low cost of fabricated components compared to conventional titanium alloys. However, in the past, melting difficulties, reproducibility problems, and the conservatism of designers resulted in only one major application—on the SR-71 “Blackbird,” Mach 3+ surveillance airplane. This paper discusses the characteristics of the beta titanium alloys— from melting, through processing, to final microstructure and mechanical properties— and suggests that with recent advances the time is now ripe for the titanium community to successfully fend off competition from other materials by making increased use of this alloy class.*

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. R. Boyer and H. W. Rosenberg, eds., Beta Titanium Alloys’ in the 1980’s, TMS-AIME Publications, Warrendale, PA, 1984.

    Google Scholar 

  2. 2.

    R. M. Duncan and C. D. T, Minion, “The Role of Depth Hardenability in the Selection of High Strength Alloys for Aircraft Applications,” The Science Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds., Pergamon Press, NY, 1970, pp. 945–957.

    Google Scholar 

  3. 3.

    R. A. Wood and H. R. Ogden. “The All-Beta Titanium Alloy (Ti-13V-llCr-3Al),” Battelle Memorial Institute, DMIC Report 110, April 1959 also ASTIA AD214002 and OTS PB 151066.

  4. 4.

    R. A. Wood, Beta Titanium Alloys, MCIC, Battelle Columbus Laboratories, Columbus, OH, 1972.

    Google Scholar 

  5. 5.

    T. W. Duerig and J. C. Williams, “Overview: Microstructure and Properties of Beta Titanium Alloys,” Ref. 1, pp. 19–67.

    Google Scholar 

  6. 6.

    R. R. Boyer and H. W. Rosenberg, “Beta Titanium on the SR-71: Historical Note I,” Ref. 1, pp. 1–8.

    Google Scholar 

  7. 7.

    W. M. Parris and H. W. Rosenberg. “Producing Ti-13V-llCr-3Al Mill Product at TMCA—Historical Note II,” Ref. 1, pp. 9–15.

    Google Scholar 

  8. 8.

    F. A. Crossley, “The Martensitic Transage Titanium Alloys: Their Metallurgy, Processing Characteristics and Potential Applications,” Ref. 1, pp. 349–386, 485–496.

    Google Scholar 

  9. 9.

    E. W. Collings, “Titanium-Niobium Superconductors,” Ref. 1, pp. 387–389.

    Google Scholar 

  10. 10.

    Unpublished Rem-Cru/Crucible data, 1953.

  11. 11.

    Unpublished Rem-Cru/Crucible data, 1957.

  12. 12.

    J. B. Guernsey, V. C. Petersen, and E. J. Dulis, “Beta III Titanium Features ‘Cold’’ Formability,” Metal Progress, 1969, pp. 23–25.

    Google Scholar 

  13. 13.

    W. A. Reinsch and H. W. Rosenberg, “Three Recent Developments in Titanium Alloys,” Titanium and Titanium Alloys Source Book, ASM, Metals Park, OH, 1982, pp. 373–379.

    Google Scholar 

  14. 14.

    A. M. Sherman and S. R. Seagle, “Torsional Properties and Performance of Beta Titanium Alloy Automotive Springs,” Ref. 1, pp. 281–294.

    Google Scholar 

  15. 15.

    R. R. Boyer, R. Bajoraitis, D. B. Greenwood, and E. E. Mild, “Ti-3Al-8V-6Cr-4Mo-4Zr Wire for Spring Applications,” Ref. 1, pp. 295–306.

    Google Scholar 

  16. 16.

    G. W. Kuhlman, R. Pishko, J. R. Kohrs, and J. W. Nelson, “Isothermal Forging of Beta and Near Beta Titanium Alloys,” Ref. 1, pp. 255–280.

    Google Scholar 

  17. 17.

    G. W. Kuhlman and R. Pishko, “Processing-Property Relationships in Hot Die Forged Alpha-Beta, Beta and Near Beta Titanium Alloys,” presented at the Fifth International Conference on Titanium, September 1984, Paper No. FO-2, and to be published in 1985.

    Google Scholar 

  18. 18.

    H. W. Stemme, “Development of a Formable Sheet Titanium Alloy,” Air Force Materials Laboratory, Technical Report AFML-TR-73-49, April 1973.

    Google Scholar 

  19. 19.

    F. H. Froes, R. F. Malone, V. C. Petersen, C. G Rhodes, J. C. Chesnutt, J. C. Williams, and J. A. Hall, “The Metallurgical Synthesis of a New Generation of Deep Hardenable Titanium Alloys. The Meta-stable Beta Ti-Mo-V-Cr-Al System—Design and Properties,” Titanium and Titanium Alloys, Scientific and Technological Aspects, Vol. 3, J. C. Williams and A. F. Belov, eds., Plenum Press, NY, 1982, pp. 2161–2172.

    Google Scholar 

  20. 20.

    F. H. Froes, V. C. Petersen, R. F. Malone, R. G Berryman, J. C. Chesnutt, C. G. Rhodes, and J. C. Williams, “Advanced Titanium Alloys: Design and Properties,” Proceedings of the Second International Conference on Mechanical Behavior of Materials, Boston, MA, August 16–20, 1976, pp. 2007–2011.

  21. 21.

    F. H. Froes. R. F. Malone, J C. Williams, M. A. Greenfield, and J. P. Hirth, “Alloy Design and Property Interrelations of Metastable Beta Titanium Alloys,” Proceedings of Joint Conference, Forging and Properties of Aerospace Materials, Leeds, England, January 1977, pp. 143–163.

    Google Scholar 

  22. 22.

    F. H. Froes, J. C. Chesnutt, C. G. Rhodes, and J. C. Williams, “Relationship of Fracture Toughness and Ductility to Microstructure and Fractographic Features in Advanced Deep Hardenable Titanium Alloys,” Toughness and Fracture Behavior of Titanium, ASTM STP 651, ASTM, Baltimore, MD, 1978, pp. 115–153.

    Chapter  Google Scholar 

  23. 23.

    T. K. Redden, “Processing and Properties of Ti-17 Alloy for Aircraft and Turbine Applications,” Ref. 1, pp. 239–254.

    Google Scholar 

  24. 24.

    S. Ontani, M. Nishigaki, T. Nishimura, “The Characteristics of Ti-Mo Beta Titanium Alloy,” Titanium Science and Technology, Vol. 3, R. I. Jaffee and H. M. Burte, eds., Plenum Press, NY, 1973, pp. 1945–1956.

    Google Scholar 

  25. 25.

    T. Nishimura, M. Nishigaki, and H. Kusamicki, “Aging Characteristics of Beta Titanium Alloys,” Ref. 19, pp. 1675–1690.

    Google Scholar 

  26. 26.

    W, L. Finlay, Titanium-Molybdenum Alloys, US Patent 2,614,041, October 14, 1952.

    Google Scholar 

  27. 27.

    H. B. Bomberger, Formable Acid Resistant Alloys, US Patent 2,819,960, January 14, 1958.

    Google Scholar 

  28. 28.

    D. A. Joslyn, Jr., “Handbook of Alloy Compositions-USSR,” DST-184OH-517-80, DIA Task No. PT-1840-05-75, May 8, 1980.

    Google Scholar 

  29. 29.

    N. N. Ageyev, L. V. Petrova, and L. P. Grankova, “Decomposition of Beta-Solid Solution in Beta-Titanium Alloys on Aging,” Ref. 24, pp. 1495–1506.

    Google Scholar 

  30. 30.

    T. Farthing, “Introducing a New Material—The Story of Titanium,” Thirteenth John Player Lecture of the Institute of Mechanical Engineers, Proc. Instn. Mech. Engrs., Vol. 191, 1977, pp. 59–73.

    Google Scholar 

  31. 31.

    D. Eylon, S. Fujishiro, P. J. Postans, and F. H. Froes, “High-Temperature Titanium Alloys—A Review,” Journal of Metals, Vol. 36, No. 11, November 1984, pp. 55–62.

    Google Scholar 

  32. 32.

    P. A. Blenkinsop, “High Temperature Alloy Development,” presented at the Fifth International Conference on Titanium, September 1984, Paper No. CRC, and to be published in 1985.

  33. 33.

    N. V. Ageev and L. A. Petrova, “The Theoretical Bases of the Development of the High-Strength Metastable Beta Alloys of Titanium,” Ref. 2, pp. 809–814.

    Google Scholar 

  34. 34.

    C. F. Yolton, R. F. Malone, and F. H. Froes, “Alloy Element Effects in Metastable Beta Titanium Alloys,” Met. Trans., Vol. 10A, January 1979, pp. 132–134.

    Article  Google Scholar 

  35. 35.

    S. R. Seagle and H. D. Kessler, “Principles of Beta Transformations and Heat Treatment of Titanium Alloys,” Course 27, Lesson 4, Metals Engineering Institute, ASM, Metals Park, OH, 1969.

    Google Scholar 

  36. 36.

    M. Hansen, Constitution of Binary Alloys, McGraw-Hill, Inc., NY, 1958, pp. 1049–1052.

    Google Scholar 

  37. 37.

    H. B. Bomberger and F. H. Froes, “The Melting of Titanium,” Journal of Metals, Vol. 36, No. 12, December 1984, pp. 39–46.

    Google Scholar 

  38. 38.

    V. C. Petersen and R. C. Buehl, Method for Melting Titanium Base Alloys, U.S. Patent No. 3,553,947, January 5, 1971.

    Google Scholar 

  39. 39.

    W. L. Finlay and H. B. Bomberger, Master Alloy, U.S. Patent No. 3,508,910, April 28, 1970.

    Google Scholar 

  40. 40.

    J. A. Hall, “Primary Processing of Beta and Near Beta Titanium Alloys,” Ref. 1, pp. 129–143.

    Google Scholar 

  41. 41.

    F. H. Froes, C. F. Yolton, J. P. Hirth, R. Ondercin, and D. Moracz, “The Processing Window for Grain Size Control in Metastable Beta Titanium Alloys,” Ref. 1 pp. 161–184.

  42. 42.

    I. Weiss and F. H. Froes, “The ‘Processing Window’ for the Near Beta Ti-10V-2Fe-3Al Alloy,” presented at the Fifth International Conference on Titanium, September 1984, Paper No. FO-7, and to be published in 1985.

    Google Scholar 

  43. 43.

    I. Weiss, F. H. Froes, and D. Eylon, “Revealing Deformed and Recrystallized Structures in Beta Titanium Alloys,” Met. Trans. A, Vol. 15A, July 1984, pp. 1493–1496.

    Article  Google Scholar 

  44. 44.

    I. Weiss, P. Bania, and F. H. Froes, Processing Ti-15-3, work in progress, 1984–1985.

    Google Scholar 

  45. 45.

    B. B. Rath, R. J. Lederich, C. F. Yolton, and F. H. Froes, “Recrystallization and Grain Growth in Metastable Beta III Titanium Alloy,” Met. Trans. A, Vol. 10A, 1979, pp. 1013–1019.

    Article  Google Scholar 

  46. 46.

    F. H. Froes, C. F. Yolton, and J. P. Hirth, “Grain Growth in Beta III Titanium Alloy (Ti-11.5Mo-6Zr-4.5Sn),” Ref. 1, pp. 185–207.

    Google Scholar 

  47. 47.

    M. E. Rosenblum, P. R. Smith, and F. H. Froes, “Microstructural Aspects of Superplastic Forming of Titanium Alloys,” Titanium ’80 Science and Technology, Vol. 2, H. Kimura and O. Izumi, eds., TMS-AIME Publications, Warrendale, PA, 1980, pp. 1015–1024.

    Google Scholar 

  48. 48.

    F. H. Froes, C. F. Yolton, J. C. Chesnutt, and C. H. Hamilton, “Microstructural Control in Titanium Alloys for Superplastic Behavior,” Ref. 21, pp. 371–398.

    Google Scholar 

  49. 49.

    J. B. Gurnsey, V. C. Petersen, and F. H. Froes, “Discussion of Effect of Microstructure on the Strength, Toughness and Stress Corrosion Cracking Susceptibility of a Metastable Beta Titanium Alloy (Ti-11.5Mo-12Zr-4.5Sn),” Met. Trans., Vol. 3, 1972, pp. 339–341.

    Article  Google Scholar 

  50. 50.

    L. A. Rosales, K. Ono, A. W. Sommer, and L. A. Lee, “Microstruetures and Mechanical Properties of Thermomechanically Treated High-Strength Beta-Titanium Alloys,” ONR Contract N00014-C-67-0439, Report NA-72-232, February 1972.

    Google Scholar 

  51. 51.

    K. Ono, L. A. Rosales, S. Motokura, and A. W. Sommer, “Mechanical Behavior of High-Strength Beta-Titanium Alloys,” ONR Contract N00014-C-67-0439, Report NA-71-754, August 1971.

    Google Scholar 

  52. 52.

    D. H. Avery, J. B. W. Greene, T. C. Reiley, R. M. Wallace, “Thermomechanical Treatment of Alpha Beta Titanium Alloy,” Ref. 24, pp. 1829–1840.

    Google Scholar 

  53. 53.

    I. S. Polkin, N. M. Semenova, and A. B. Notkin, “The Influence of Polygorized Structure on the Properties of Heat Treated Beta Titanium Alloys,” Ref. 25, pp. 1799–1808.

    Google Scholar 

  54. 54.

    H. B. Bomberger and E. E. Knapek, “The Acid Pickling of Titanium,” Reactive Metals, Vol. 2, AIME/Interscience, 1959, pp. 509–521.

    Google Scholar 

  55. 55.

    J. E. Costa, D. Banerjee, and J. C. Williams, “Hydrogen Effects in Beta-Titanium Alloys,” Ref. 1, pp. 69–84.

    Google Scholar 

  56. 56.

    A. W. Bowen, “On the Strengthening of a Metastable (3-Titanium Alloy by ω- and α-Precipitation,” Ref. 47, pp. 1317–1326.

    Google Scholar 

  57. 57.

    A. W. Bowen, “Omega Phase Formation in Metastable β-Titanium Alloys,” Ref. 1, pp. 85–106.

    Google Scholar 

  58. 58.

    C. Hammond, “The Morphology of the Omega Phase,” Ref. 2, pp. 711–718.

    Google Scholar 

  59. 59.

    N. A. Vanderpuye and A. P. Miodownik, “The Stability of the Omega Phase in Titanium and Zirconium Alloys,” Ref. 2, pp. 719–729.

    Google Scholar 

  60. 60.

    J. M. Silcock, “Note on the Structure of the Omega Phase,” Ref. 2, pp. 731–732.

    Google Scholar 

  61. 61.

    J. M. Capenos and F. H. Froes, “Comment on the Preparation of Thin Foils of Beta Titanium.” Journal Sci. Insts., Series 2, Vol. 2, 1969, pp. 735–736.

    Article  Google Scholar 

  62. 62.

    T. W. Duerig, G. T. Terlinde, and J. C. Williams, “The ω-Phase Reaction in Titanium Alloys,” Ref 47, pp. 1300–1305.

    Google Scholar 

  63. 63.

    J, C. Williams, B. S. Hickman, and H. L. Markus, Met. Trans., Vol. 2, 1971, p. 1913.

    Google Scholar 

  64. 64.

    J. C. Williams, “Precipitation in Titanium Base Alloy,” Precipitation Processes and Solids. K. C. Russell and H. I. Aaronson, eds., AIME Publications, New York, 1978, pp. 191–221.

    Google Scholar 

  65. 65.

    T. W. Duerig, R. M. Middleton, G. T. Terlinde, and J. C. Williams, “Stress Assisted Transformation in Ti-10V-2Fe-3Al,” Ref. 47, pp. 1503–1512.

    Google Scholar 

  66. 66.

    J. P. Hirth and F. H. Froes, “Interrelations between Fracture Toughness and Other Mechanical Properties in Titanium Alloys,” Met. Trans., Vol. 8A, July 1977, pp. 1165–1176.

    Article  Google Scholar 

  67. 67.

    J. C. Chesnutt and F. H. Froes, “Effect of Alpha-Phase Morphology and Distribution on the Tensile Ductility of a Metastable Beta Titanium Alloy,” Met. Trans. A., Vol. 8A, June 1977, pp. 1013–1017.

    Article  Google Scholar 

  68. 68.

    J. C. Williams, F. H. Froes, C. F. Yolton and I. M. Bernstein, “The Influence of Thermomechanical Processing on the Microstructure of Metastable Beta Titanium Alloys,” proceedings of the Fourth International Conference on the Strength of Metals and Alloys, Nancy, France, September 1976.

    Google Scholar 

  69. 69.

    J. C. Williams, F. H. Froes, and C. F. Yolton, “Some Observations on the Structure of Beta III as Effected by Processing History,” Met. Trans. A., Vol. 11A, February 1980, p. 353.

    Article  Google Scholar 

  70. 70.

    F. H. Froes, C. F. Yolton, J. M. Capenos, M. G. H. Wells, and J. C. Williams, “The Relationship Between the Microstructure and Age Hardening Response in the Metastable Beta Titanium Alloy Ti-11.5Mo-6Zr-4.5Sn (Beta III),” Met. Trans., Vol. 11 A, 1980, p. 21.

    Article  Google Scholar 

  71. 71.

    S. Ankem and S. R. Seagle, “Heat-Treatment of Metastable Beta Titanium Alloys,” Ref. 1, pp. 107–126.

    Google Scholar 

  72. 72.

    F. H. Froes, J. M. Capenos, and C. F. Yolton, “Decoration of Plastically Strained Regions of Metallic Systems,” Metallography, Vol. 9, 1976, p. 535.

    Article  Google Scholar 

  73. 73.

    F. H. Froes, J. M. Capenos, and M. G. H. Wells, “Alloy Partitioning in Beta III and the Effect on Aging Characteristics,” Ref. 24, pp. 1621–1633.

    Google Scholar 

  74. 74.

    F. H. Froes, C. F. Yolton, and V. C. Petersen, “Thermal Stability of an Advanced High Speed Aircraft Alloy,” SAMPE Quarterly, Vol. 8, No. 3, April 1977, pp. 32–37.

    Google Scholar 

  75. 75.

    J. C. Williams and M. J. Blackburn, Transactions of AIME, Vol. 245, 1969, p. 2352.

    Google Scholar 

  76. 76.

    J. C. Williams, F. H. Froes, and S. Fujishiro, “Microstructure and Properties of the Alloy Ti-11.5Mo-6Zr-4.5Sn (Beta III),” Ref. 25, Vol. 2, pp. 1421–1436.

    Google Scholar 

  77. 77.

    F. H. Froes, R. F. Malone, S. Fujishiro, R. F. Geisendorfer, and J. A. Hall, “Effect of Omega Phase on Selected Properties of Beta Titanium Alloys,” Air Force Materials Laboratory, Technical Report AF’ML-TR-75-30, June 1975.

    Google Scholar 

  78. 78.

    D. Eylon, F. H. Froes, and R. W. Gardiner, “Developments in Titanium Alloy Casting Technology,” Journal of Metals, Vol. 35, No. 2, February 1983, pp. 35–47.

    Google Scholar 

  79. 79.

    H. B. Bomberger, G. S. Hall, and S. R. Seagle, “Low-Melting Hypereutectoid Titanium Copper Alloys,” Ref. 47, pp. 1278–1285.

    Google Scholar 

  80. 80.

    F. H. Froes and D. Eylon, “Powder Metallurgy of Titanium Alloys—A Review,” presented at the Fifth International Conference on Titanium, September 1984, Paper No. PMC, and to be published in 1985.

    Google Scholar 

  81. 81.

    L. Parsons, J. Bruce, J. Lane, and F. H. Froes, “Titanium Powder Metallurgy Comes of Age,” Metal Progress, Vol. 126, No. 4, September 1984, pp. 83–94.

    Google Scholar 

  82. 82.

    F. H. Froes and J. E. Smugeresky, eds., Powder Metallurgy of Titanium Alloys, TMS-AIME Publications, Warrendale, PA, 1980.

    Google Scholar 

  83. 83.

    F. H. Froes and D. Eylon, eds., Titanium Net Shape Technologies, TMS-AIME Publications, Warrendale, PA, 1984.

    Google Scholar 

  84. 84.

    N. C. Birla, V. DePierre, and A. M. Adair, “Evaluation of Beta III Titanium Alloy Powders Compacted by Hot Swaging,” Powder Metallurgy, No. 3, 1978, pp. 163–167.

    Google Scholar 

  85. 85.

    R. R. Boyer, D. Eylon, and F. H. Froes, “Comparative Evaluation of Ti-10V-2Fe-3Al Cast, P/M and Wrought Product Forms,” presented at the Fifth International Conference on Titanium, September 1984, Paper No. AA-13, and to be published in 1

    Google Scholar 

  86. 86.

    R. R. Boyer, D. Eylon, C. F. Yolton, and F. H. Froes, “Powder Metallurgy of Ti-10V-2Fe-3Al,” Ref. 83, pp. 63–78.

    Google Scholar 

  87. 87.

    F. H. Froes and J. R. Pickens, “Powder Metallurgy of Light Metal Alloys for Demanding Applications,” Journal of Metals, Vol. 36, No. 1, January 1984, pp. 14–28.

    Google Scholar 

  88. 88.

    S. J. Savage and F. H. Froes, “Production of Rapidly Solidified Metals and Alloys,” Journal of Metals, Vol. 36, No. 4, April 1984, pp. 20–33.

    Google Scholar 

  89. 89.

    T. F. Broderick, F. H. Froes, and A. G. Jackson, “Cooling Rate Effects on Ti-6A1-4V and Beta III Titanium Alloys,” Rapidly Solidified Metastable Materials, Vol. 28, B. H. Kear and B. C. Giessen, eds., Elsevier Science Publishing Company, NY, 1984, pp. 345–351.

    Google Scholar 

  90. 90.

    S. Krishnamurthy, A. G. Jackson, H. Jones, and F. H. Froes, “Beta-Eutectoid Decomposition in Rapidly Solidified Titanium-Nickel Alloys,” submitted to Met. Trans., 1984.

    Google Scholar 

  91. 91.

    P. R. Smith and F. H. Froes, work in progress, AFWAL/MLLS, 1984–1985.

  92. 92.

    H. W. Rosenberg, “Ti-13V-llCr-3Al Data Sheet,” Ref. 1, pp. 397–400.

    Google Scholar 

  93. 93.

    D. H. Wilson and C. M. Esler, “Properties of Ti-3Al-8V-6Cr-4Mo-4Zr,” Ref. 1, pp. 457–482.

    Google Scholar 

  94. 94.

    R. R. Boyer and H. W. Rosenberg. “Ti-10V-2Fe-3A1 Properties,” Ref. 1, pp. 441–456.

    Google Scholar 

  95. 95.

    H. W. Rosenberg, “Ti-15-3 Property Data,” Ref. 1, pp. 409–425.

    Google Scholar 

  96. 96.

    J. P. Beckman and C. F. Yolton, “Beta III (Till.5Mo-6Zr-4.5Sn),” Ref. 1, pp. 401–408.

    Google Scholar 

  97. 97.

    J. M. Olexa, L. J. Bartlo, and H. B. Bomberger, “The Manufacturing of Aircraft-Quality Hydraulic Tubing with the Ti-3Al-8V-6Cr-4Mo-4Zr Alloy,” Ref. 24, Vol. 1. pp. 477–488.

    Google Scholar 

  98. 98.

    M. E. Rosenblum, A. Shames, and W. B. Treppel, “Cold Forming of Ti-15V-3Cr-3AL3Sn,” Ref. 1, pp. 307-330.

    Google Scholar 

  99. 99.

    A. E. Leach, “Formed Ti-15V-3Cr-3Al-3Sn Tankage,” Ref. 1, pp. 331–348.

  100. 100.

    V. C. Petersen, F. H. Froes, and R. F. Malone, “Metallurgical Characteristics and Mechanical Properties of Beta III, A Heat-Treatable Beta Titanium Alloy,” Ref. 24, pp. 1969–1980.

    Google Scholar 

  101. 101.

    J. C. Williams, F. H. Froes, and S. Fujishiro, “Microstructure and Properties of the Alloy Ti-11.5Mo-6Zr-4.5Sn (Beta III),” Ref. 19, Vol. 2, pp. 1421–1436.

    Google Scholar 

  102. 102.

    T. F. Broderick, A. G. Jackson, H. Jones, and F. H. Froes. “The Effect of Cooling Conditions on the Microstructure of Rapidly Solidified Ti-6Al-4V,” submitted to Met. Trans. A, 1984.

    Google Scholar 

  103. 103.

    F. H. Hayes, H. B. Bomberger, F. H. Froes, L. Kaufman, and H. M. Burte, “Advances in Titanium Extraction Metallurgy,” Journal of Metals, Vol. 36. No. 6, June 1984, pp. 70–76.

    Google Scholar 

  104. 104.

    P. R. Smith, C. M. Cooke, and F. H. Froes, “Titanium Mill Products Using a Powder Metallurgy Approach,” presented at the SAMPE Meeting, Anaheim, CA, April 1983.

    Google Scholar 

  105. 105.

    P. R. Smith and F. H. Froes, “Developments in Titanium Metal Matrix Composites,” Journal of Metals, Vol. 36. No. 3, March 1984, pp. 19–26.

    Google Scholar 

  106. 106.

    P. R. Smith and F. H. Froes, Improved Titanium Metal-Matrix Composites, U.S. Patent Application S/N 477,793. filed March 1983.

    Google Scholar 

Download references

Authors

Additional information

F.H. Frees received his M.S. and Ph.D. in physical metallurgy from the University of Sheffield. He is currently Technical Area Manager and focal point for metallic structural materials at the Air Force Wright Aeronautical Laboratories, Materials Laboratory, AFWAL/MLLS at Wright Patterson Air Force Base in Ohio. He is also an adjunct professor at the University of Dayton and Wright State University and teaches courses on titanium for the ASM. Dr. Froes is also a member of TMS

H.B. Bomberger received his M.S. and Ph.D. In metallurgical engineering from Ohio State University. He is currently a visiting scientist at the Air Force Materials Laboratory, an instructor in metallurgical engineering at Youngstown State University, and a technical consultant to industry. Dr. Bomberger is also a member of TMS

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Froes, F.H., Bomberger, H.B. The Beta Titanium Alloys. JOM 37, 28–37 (1985). https://doi.org/10.1007/BF03259693

Download citation

Keywords

  • Titanium Alloy
  • Alpha Phase
  • Beta Titanium Alloy
  • Beta Transus
  • Beta Alloy