Skip to main content
Log in

Monoclonal Antibodies to Adhesion Molecules

Therapeutic Use in Transplant Rejection

  • Review Article
  • Disease Treatment Review
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Allograft rejection is accomplished by an immunological cascade involving recognition of alloantigens, activation and proliferation of alloantigen-specific ? cells, target cell lysis mediated by cytotoxic ? cells, and production of cytotoxic antibodies. In each stage of the alloimmune response, cell-cell contacts such as those between ? cells and antigen-presenting cells, ? cells and donor target cells and ? cells and ? cells are necessary. In these cell-cell interactions, adhesion molecules play a pivotal role by participating in cellular adhesion as well as in signal transduction. Alloantigen-specific ? cell activation depends on: (a) interactions between the antigen, the ? cell receptor and molecules of the major histocompatibility complex, and (b) costimulatory signals generated when adhesion molecules bind to their ligands. When major interactions between adhesion molecules and their ligands are blocked, antigen-specific ? cells are selectively induced into a state of anergy. Thus, by using monoclonal antibodies against adhesion molecules, attempts have been made to block the interaction of costimulatory molecules with the objective of inducing donor-specific tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mueller D, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989; 7: 445–80

    Article  PubMed  CAS  Google Scholar 

  2. Shimizu Y, Newman W, Tanaka Y, et al. Lymphocyte interactions with endothelial cells. Immunol Today 1992; 13: 106–12

    Article  PubMed  CAS  Google Scholar 

  3. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25

    Article  PubMed  CAS  Google Scholar 

  4. Tanaka Y, Albelda SM, Horgan KJ, et al. CD31 is a preferential amplifier of β1-integrin-mediated adhesion for distinctive T cell subsets. J Exp Med 1992; 176: 245–53

    Article  PubMed  CAS  Google Scholar 

  5. Suranyi MG, Bishop GA, Clayberger C, et al. Lymphocyte adhesion molecules in T cell-mediated lysis of human kidney cells. Kidney Int 1991; 39: 312–9

    Article  PubMed  CAS  Google Scholar 

  6. Adams DH, Hubscher SG, Shaw J, et al. Intercellular adhesion molecule 1 on liver allografts during rejection. Lancet 1989; 2: 1122–4

    Article  PubMed  CAS  Google Scholar 

  7. Rose ML, Page C, Hengstenberg C, et al. Identification of antigen presenting cells in normal and transplanted human heart: importance of endothelial cells. Human Immunol 1990; 28: 179–85

    Article  CAS  Google Scholar 

  8. Pelletier RP, Morgan CJ, Sedmak DD, et al. Analysis of inflammatory endothelial changes, including VCAM-1 expression, in murine cardiac grafts. Transplantation 1992; 55: 315–20

    Article  CAS  Google Scholar 

  9. Valle A, Zuber CE, Defrance T, et al. Activation of human B lymphocytes through CD40 and interleukin 4. Eur J Immunol 1989; 19: 1463–7

    Article  PubMed  CAS  Google Scholar 

  10. Parker DC. T cell-dependent B cell activation. Annu Rev Immunol 1993; 11: 331–60

    Article  PubMed  CAS  Google Scholar 

  11. Damle NK, Linsley PS, Ledbetter JA. Direct helper T cell-induced B-cell differentiation involves interaction between T-cell antigen CD28 and B-cell activation antigen B7. Eur J Immunol 1991; 21: 1277–82

    Article  PubMed  CAS  Google Scholar 

  12. Fisher A, Lisowska-Grospierre B, Anderson DC, et al. Leukocyte adhesion deficiency: molecular basis and functional consequences. Immunonodef Rev 1989; 1: 39–54

    Google Scholar 

  13. Le Deist F, Blanche S, Keable H, et al. Successful HLA non-identical bone marrow transplantation in three patients with the leukocyte adhesion deficiency. Blood 1989; 74: 512–6

    PubMed  Google Scholar 

  14. Fisher A, Griscelli C, Blanche S, et al. Prevention of graft failure by an anti-HLFA-1 monoclonal antibody in HLA mismatched bone-marrow transplantation. Lancet 1986; 2: 1058–61

    Article  Google Scholar 

  15. Baume D, Kuentz M, Pico JL, et al. Failure of a CD18/anti-LFA-1 monoclonal antibody infusion to prevent graft rejection in leukemic patients receiving T depleted allogeneic bone marrow transplantation. Transplantation 1989; 47: 472–4

    Article  PubMed  CAS  Google Scholar 

  16. Le Mauff B, Hourmant M, Rougier JP, et al. Effect of anti-LFA-1 (CD11a) monoclonal antibodies in acute rejection in human kidney transplantation. Transplantation 1991; 52: 291–6

    Article  PubMed  Google Scholar 

  17. Cosimi AB, Conti D, Delmonico FL, et al. In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol 1990; 144: 4604–12

    PubMed  CAS  Google Scholar 

  18. Haug C, Colvin RB, Delmonico FL, et al. A phase I trial of immunosuppression with anti-ICAM-1 (CD-54) mAb in renal allograft recipients. Transplantation 1993; 55: 766–73

    Article  PubMed  CAS  Google Scholar 

  19. Orosz CG, Ohye RG, Pelletier RP, et al. Treatment with anti-vascular cell adhesion molecule 1 monoclonal antibody induces long-term murine cardiac allograft acceptance. Transplantation 1993; 56: 453–60

    Article  PubMed  CAS  Google Scholar 

  20. Isobe M, Yagita H, Okumura K, et al. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 andLFA-1. Science 1992; 255: 1125–7

    Article  PubMed  CAS  Google Scholar 

  21. Van Seventer GA, Shimizu Y, Morgan KJ, et al. The LFA-1 ligand ICAM 1 provides an important costimulatory signal for T cell receptor mediated activation of resting T cells. J Immunol 1990; 144: 4579–86

    PubMed  Google Scholar 

  22. Jendrisak G, Gamero J, Mohanakumar T, et al. Clonal anergy induction by monoclonal antibodies to CD4, LFA-1, and ICAM-1. Transplant Proc 1993; 25: 828–30

    PubMed  CAS  Google Scholar 

  23. Kameoka H, Ishibashi M, Tamatani T, et al. Comparative immunosuppressive effect of anti-CD 18 and anti-CD11a monoclonal antibodies on rat heart allotransplantation. Transplant Proc 1993; 25: 833–6

    PubMed  CAS  Google Scholar 

  24. Komori A, Nagata M, Ochiai T, et al. Role of ICAM-1 and LFA-1 in cardiac allograft rejection of the rat. Transplant Proc 1993; 25: 831–2

    PubMed  CAS  Google Scholar 

  25. Uchikoshi F, Ito T, Kamiike W, et al. Restoration of defective immune response in diabetic BB rats after successful pancreas transplantation. Transplant Proc. In press

  26. Klempnauer J, Steiniger B, Marguarding E, et al. Effects of the RT1.C region in rat allotransplantation. Transplant Proc 1987; 19: 713–5

    PubMed  CAS  Google Scholar 

  27. Cooke JC, McBride JL, Schulak JA. A comparison between pancreas and heart allotransplantation after administration of donor-specific antigen and cyclosporine. Transplantation 1989; 48: 15–9

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto S, Ito T, Nakata S, et al. Rejection mechanism of rat pancreatico-duodenal allografts with a class IMHC disparity. Transplantation. In press

  29. Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992; 257: 789–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, T., Miyasaka, M. & Nozawa, M. Monoclonal Antibodies to Adhesion Molecules. Clin. Immunother. 1, 460–468 (1994). https://doi.org/10.1007/BF03259038

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259038

Keywords

Navigation