Skip to main content
Log in

Immunotherapy for Tuberculosis

Investigative and Practical Aspects

  • Review Article
  • Disease Treatment Review
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Modern immunotherapy for tuberculosis is designed to enhance antibacterial immunity and switch off the immune mechanism of tissue damage by promoting maturation of type 1 CD4+ and cytotoxic CD8+ ? lymphocytes, leading to destruction of intracellular bacilli. These intracellular organisms are the reason chemotherapy has to be so prolonged, and may be the persistent bacteria that are responsible for reactivation years after infection.

Noncompliance with therapy is a major cause of failure of tuberculosis control and of increasing drug resistance, especially in the developing world. A combination of chemotherapy to kill rapidly metabolising extracellular bacilli and some intracellular organisms, with immunotherapy effective against slowly metabolising intracellular bacilli, should lead to fewer treatment failures and shorter treatment regimens.

A suspension of heat-killed Mycobacterium vaccae NCTC 11659 has proved effective in pilot investigations. Randomised double-blind placebo-controlled studies have shown that a single injection of M. vaccae, given early in chemotherapy, halves treatment failure rates and reduces deaths during treatment. Even when M. vaccae had to be given with very inadequate chemotherapy, clinical condition and clearing of bacilli from the sputum were much improved.

Promising results have been obtained in the treatment of multidrug-resistant tuberculosis, and in patients co-infected with HIV. Radical new approaches to the treatment of tuberculosis are badly needed, and although definitive trials have still to be completed, the evidence available suggests that immunotherapy with M. vaccae is a powerful and cheap addition to the treatment armamentarium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koch R. An address on bacteriological research delivered before the International Medical Congress, held in Berlin, August 1890. Br Med J 1890; 2: 380–3

    Article  PubMed  CAS  Google Scholar 

  2. Grange JM. The mystery of the mycobacterial persister. Tubercle Lung Dis 1992; 73: 249–51

    Article  CAS  Google Scholar 

  3. Stanford JL. Koch’s phenomenon: can it be corrected. Tubercle Lung Dis 1991; 72: 13–20

    Google Scholar 

  4. Stanford JL, Grange JM. New concepts for the control of tuberculosis in the twenty-first century. J R Coll Physicians Lond 1993; 27: 218–23

    PubMed  CAS  Google Scholar 

  5. Koch R. Fortsetzung über ein Heilmittel gegen Tuberculose. Dtsch Med Wochenschr 1891; 17: 101–2

    Article  Google Scholar 

  6. Rook GAW, Al Attiyah R. Cytokines and the Koch phenomenon. Tubercle Lung Dis 1991; 72: 13–20

    CAS  Google Scholar 

  7. Al Attiyah R, Rosen H, Rook GAW. A model for the investigation of factors influencing haemorrhagic necrosis mediated by tumour necrosis factor in tissue sites primed with mycobacterial antigen preparations. Clin Exp Immunol 1992; 88: 537–42

    Article  PubMed  CAS  Google Scholar 

  8. Al Attiyah R, Moreno C, Rook GAW. TNF-alpha-mediated tissue damage in mouse foot-pads primed with mycobacterial preparations. Res Immunol 1992; 143: 601–10

    Article  PubMed  CAS  Google Scholar 

  9. Friedmann FF. Spontane Lungentuberkulose bei Scildkroten und die Stellung des Tuberkelbazillus im System. Z Tuberkulose 1903; 4: 439–57

    Google Scholar 

  10. Fowler WC. A preliminary report on the treatment of tuberculosis with turtle vaccine. Tubercle 1930; 12: 12–7

    Article  Google Scholar 

  11. Spahlinger H. Note on the treatment of tuberculosis. Lancet 1922; 1: 5–8

    Article  Google Scholar 

  12. Mitchison DA. Drug resistance in mycobacteria. Br Med Bull 1984; 40: 84–90

    PubMed  CAS  Google Scholar 

  13. British Thoracic Society. A controlled trial of 6 months chemotherapy in pulmonary tuberculosis. First report: results during chemotherapy. Br J Dis Chest 1981; 75: 141–53

    Article  Google Scholar 

  14. British Thoracic Society. A controlled trial of 6 months chemotherapy in pulmonary tuberculosis. Final report: results during the 36 months after the end of chemotherapy and beyond. Br J Dis Chest 1984; 78: 330–6

    Article  Google Scholar 

  15. Grzybowski S. Drugs are not enough. Tubercle Lung Dis 1993; 74: 145–6

    Article  CAS  Google Scholar 

  16. Stanford JL, Grange JM. The promise of immunotherapy for tuberculosis. Respir Med 1994; 88: 3–7

    Article  PubMed  CAS  Google Scholar 

  17. Rook GA, Steele J, Fraher L, et al. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 1986; 57: 159–63

    PubMed  CAS  Google Scholar 

  18. Rook GAW, Champion BR, Steele J, et al. I-A restricted activation by T cell lines of anti-tuberculosis activity in murine macrophages. Clin Exp Immunol 1985; 59: 414–20

    PubMed  CAS  Google Scholar 

  19. Dalton DK, Pitts-Meek S, Keshav S, et al. Multiple defects of immune cell function in mice with disrupted interferon-gammagenes. Science 1993; 259: 1739–42

    Article  PubMed  CAS  Google Scholar 

  20. Flynn JL, Goldstein MM, Triebold KJ, et al. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 1992; 89: 12013–7

    Article  PubMed  CAS  Google Scholar 

  21. Kaufmann SHE. CD8+ T lymphocytes in intracellular microbial infection. Immunol Today 1988; 9: 168–74

    Article  PubMed  CAS  Google Scholar 

  22. McDonough KA, Kress Y, Bloom BR. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 1993; 61: 2763–73

    PubMed  CAS  Google Scholar 

  23. Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today 1991; 12: 256–7

    Article  PubMed  CAS  Google Scholar 

  24. Chan J, Xing Y, Magliozzo RS, et al. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 1992; 175: 1111–22

    Article  PubMed  CAS  Google Scholar 

  25. Grzych JM, Pearce E, Cheever A, et al. Egg deposition is the stimulus for the production of Th2 cytokines in murine Schistosomiasis mansoni. J Immunol 1991; 146: 1322–40

    PubMed  CAS  Google Scholar 

  26. Rook GAW, Hemandez-Pando R, Lightman S. Hormones, peripherally activated prohormones, and regulation of the TH1/TH2 balance. Immunol Today 1994; in press

    Google Scholar 

  27. Yong AJ, Grange JM, Tee RD, et al. Total and anti-mycobacterial IgE levels in serum from patients with tuberculosis and leprosy. Tubercle Lung Dis 1989; 70: 273–9

    CAS  Google Scholar 

  28. Surcel HM, Troye-Blomberg M, Paulie S, et al. Th1/Th2 profiles in tuberculosis based on proliferation and cytokine response of peripheral blood lymphocytes to mycobacterial antigens. Immunology 1994; in press

    Google Scholar 

  29. Stanford JL, Rook GAW, Bahr GM, et al. Mycobacterium vaccae in immunoprophylaxis and immunotherapy of leprosy and tuberculosis. Vaccine 1990; 8: 525–30

    Article  PubMed  CAS  Google Scholar 

  30. Grange JM, Stanford JL, Rook GAW, et al. Tuberculosis and HIV; light after darkness. Thorax 1994; 49: in press

  31. Stanford JL, Paul RC. A preliminary report of some studies of environmental mycobacteria from Uganda. Ann Soc Belg Med Trop 1973; 53: 389–93

    PubMed  CAS  Google Scholar 

  32. Brown JAK, Stone MM, Sutherland I. BCG vaccination of children against leprosy in Uganda. Br Med J 1966; 1: 7–14

    Article  PubMed  CAS  Google Scholar 

  33. Stanford JL, Shield MJ, Rook GA. How environmental mycobacteria may predetermine the protective efficacy of BCG. Tubercle Lung Dis 1981; 62: 55–62

    CAS  Google Scholar 

  34. Shepard CC. The experimental disease that follows the injection of human leprosy bacilli into footpads of mice. J Exp Med 1960; 112: 445–54

    Article  PubMed  CAS  Google Scholar 

  35. Rees RJW. The impact of experimental human leprosy in the mouse on leprosy research. Int J Lepr 1971; 39: 201–15

    CAS  Google Scholar 

  36. Gaugas JM, Rees RJW, Weddell AGM, et al. Reversal effects of thymus grafts on lepromatous leprosy in thymectomized irradiated mice. Int J Lepr 1971; 39: 388–95

    CAS  Google Scholar 

  37. Stanford JL, Stanford CA, Ghazi-Saidi K, et al. Vaccination and skin test studies on the children of leprosy patients [published erratum appears in Int J Lepr Other Mycobact Dis 1989; 57 (4): 927ff]. Int J Lepr Other Mycobact Dis 1989; 57: 38–44

    PubMed  CAS  Google Scholar 

  38. Ghazi-Saidi K, Stanford JL, Stanford CA, et al. Vaccination and skin test studies on children living in villages with differing endemicity for leprosy and tuberculosis. Int J Lepr Other Mycobact Dis 1989; 57: 45–53

    PubMed  CAS  Google Scholar 

  39. Ganapati R, Revankar CR, Lockwood DNJ, et al. A pilot study of three potential vaccines for leprosy in Bombay. Int J Lepr Other Mycobact Dis 1989; 57: 33–7

    PubMed  CAS  Google Scholar 

  40. Stanford JL. The history and future of vaccination and immunotherapy for leprosy. Trop Geogr Med 1994; 46: 109–23

    Google Scholar 

  41. Stanford JL, Nye PM, Rook GA, et al. A preliminary investigation of the responsiveness or otherwise of patients and staff of a leprosy hospital to groups of shared or species antigens of mycobacteria. Lepr Rev 1981; 52: 321–7

    PubMed  CAS  Google Scholar 

  42. Nye PM, Price JE, Revankar CR, et al. The demonstration of two types of suppressor mechanism in leprosy patients and their contacts by quadruple skin-testing with mycobacterial reagent mixtures. Lepr Rev 1983; 54: 9–18

    PubMed  CAS  Google Scholar 

  43. Morton A, Nye P, Rook GA, et al. A further investigation of skin-test responsiveness and suppression in leprosy patients and healthy school children in Nepal. Lepr Rev 1984; 55: 273–81

    PubMed  CAS  Google Scholar 

  44. Nye PM, Stanford JL, Rook GA, et al. Suppressor determinants of mycobacteria and their potential relevance to leprosy. Lepr Rev 1986; 57: 147–57

    PubMed  CAS  Google Scholar 

  45. Stanford JL, Terencio de Las Aguas J, Torres P, et al. Studies on the effects of a potential immunotherapeutic agent in leprosy patients. Q Cooperazione Sanitaria 1987; 7: 201–6

    Google Scholar 

  46. Pozniak A, Stanford JL, Johnson NM, et al. Preliminary studies of immunotherapy of tuberculosis in man. Bull Int Union Tuberc 1986; 62: 39–40

    Google Scholar 

  47. Bahr GM, Stanford JL, Chugh TD, et al. An investigation of patients with pulmonary tuberculosis in Kuwait in preparation for studies of immunotherapy with Mycobacterium vaccae. Tubercle Lung Dis 1990; 71: 77–86

    CAS  Google Scholar 

  48. Stanford JL, Bahr GM, Rook GA, et al. Immunotherapy with Mycobacterium vaccae as an adjunct to chemotherapy in the treatment of pulmonary tuberculosis. Tubercle Lung Dis 1990; 71: 87–93

    CAS  Google Scholar 

  49. Bahr GM, Shaaban MA, Gabriel M, et al. Improved immunotherapy for pulmonary tuberculosis with Mycobacterium vaccae. Tubercle Lung Dis 1990; 71: 259–66

    CAS  Google Scholar 

  50. Onyebujoh PC, Rook GAW. Mycobacterium vaccae immunotherapy [letter]. Lancet 1991; 338: 1534

    Article  Google Scholar 

  51. Etemadi A, Farid R, Stanford JL. Immunotherapy for drug resistant tuberculosis [letter]. Lancet 1992; 340: 1360–1

    Article  PubMed  CAS  Google Scholar 

  52. Stanford JL, Onyebujoh PC, Rook GAW, et al. Old plague, new plague and a treatment for both? AIDS 1993; 7: 1275–7

    Article  PubMed  CAS  Google Scholar 

  53. Hemandez-Pando R, Rook GAW. T cell types and endocrines in the regulation of tissue-damaging mechanisms in tuberculosis. Immunobiology 1994. In press

    Google Scholar 

  54. Pilkington C, Rook G, Isenberg DA. Glycosylation of immunoglobulins: prospects for diagnosis and therapy in rheumatology. Clin Immunother 1994; 1: 169–72

    Article  Google Scholar 

  55. Rook GAW, Onyebujoh P, Wilkins E, et al. A longitudinal study of % agalactosyl IgG in tuberculosis patients receiving chemotherapy, with or without immunotherapy. Immunology 1994; 81: 149–54

    PubMed  CAS  Google Scholar 

  56. Rook GAW, Onyebujoh P, Stanford JL. TH1 → TH2 switch and loss of CD4 cells in chronic infections; an immuno-endocrinological hypothesis not exclusive to HIV. Immunol Today 1993; 14: 568–9

    Article  PubMed  CAS  Google Scholar 

  57. Clerici M, Shearer GM. A TH1 to TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 1993; 14: 107–11

    Article  PubMed  CAS  Google Scholar 

  58. Salk J, Bretscher PA, Salk PL, et al. A strategy for prophylactic vaccination against HIV. Science 1993; 260: 1270–2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanford, J.L., Stanford, C.A., Rook, G.A.W. et al. Immunotherapy for Tuberculosis. Clin. Immunother. 1, 430–440 (1994). https://doi.org/10.1007/BF03259035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259035

Keywords

Navigation