Skip to main content
Log in

Immunotherapy for Multiple Sclerosis

A Review of the Clinical Experience

  • Review Article
  • Disease Treatment Review
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Multiple sclerosis is the most common cause of non-traumatic neurological disability affecting young adults in the northern hemisphere. Recent technological advances in immunology, molecular biology and neuroimaging have accelerated our understanding of the pathogenesis of this disorder. Improvements in clinical trial methodology will soon allow researchers to test therapeutic agents in a fraction of the time traditionally required to study therapeutic claims in multiple sclerosis. The recent approval of interferon beta-1b by the US Food and Drug Administration has already had a profound effect on clinical trials in progress and on the manner in which neurologists in the US treat multiple sclerosis outside the confines of clinical trials. It will certainly be difficult to perform placebo-controlled clinical trials in the future.

In light of these recent advances, we review the clinical experience of immunosuppressive and immunomodulatory therapies that have progressed beyond the pilot stage of testing. These therapies include azathioprine, copolymer I, corticosteroids, cyclophosphamide, cyclosporin, interferon-β, plasma exchange and total lymphoid irradiation. For each therapy a discussion of the potential mechanism of action is followed by a critical review of the pertinent clinical experience. Each section concludes with a commentary regarding the potential or proven risks and benefits of each therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown AM, McFarlin DE. Relapsing experimental allergic encephalomyelitis in the SJL/J mouse. Lab Invest 1981; 45: 278–84

    PubMed  CAS  Google Scholar 

  2. Tuohy VK, Sobel RA, Lees MB. Myelin proteolipid protein-induced EAE: variations of disease expression in different strains of mice. J Immunol 1988; 140: 1868–73

    PubMed  CAS  Google Scholar 

  3. Thompson AJ, Kermode AG, Wicks D, et al. Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 1991; 29: 53–62

    Article  PubMed  CAS  Google Scholar 

  4. Larsson JP, Cavaale G, Reiise T, et al. Multiple sclerosis — more than one disease. Acta Neurol Scand 1985; 72: 145–50

    Article  Google Scholar 

  5. Olerup O, Hillert J, Fredrikson S, et al. Primary chronic progressive and relapsing-remitting multiple sclerosis: two immunogenetically distinct disease entities. Proc Natl Acad Sci USA 1989; 86: 7113–7

    Article  PubMed  CAS  Google Scholar 

  6. Hafler DA, Weiner HL. MS: a CNS and systemic autoimmune disease. Immunol Today 1989; 10: 104–7

    Article  PubMed  CAS  Google Scholar 

  7. Traugott U, Lebon P. Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann Neurol 1988; 24: 243–51

    Article  PubMed  CAS  Google Scholar 

  8. Traugott U, Reinherz EL, Raine CS. Multiple sclerosis: distribution of T cells, T cell subsets, and Ia-positive macrophages in lesions of different ages. J Immunol 1983; 4: 201–21

    CAS  Google Scholar 

  9. Vartdal F. HLA associations in multiple sclerosis: implications for immunopathogenesis. Res Immunol 1989; 140: 192–6

    Article  PubMed  CAS  Google Scholar 

  10. Seboun E, Robinson MA, Doolittle TH, et al. A susceptibility locus for multiple sclerosis is linked to the T cell receptor beta chain complex. Cell 1989; 57: 1095–100

    Article  PubMed  CAS  Google Scholar 

  11. Reinherz EL, Weiner HI, Hauser SL, et al. Loss of suppressor T-cells in active multiple sclerosis: analysis with monoclonal antibodies. N Engl J Med 1980; 303: 125–9

    Article  PubMed  CAS  Google Scholar 

  12. Chofflon M, Weiner HL, Morimoto C, et al. Loss of functional suppression is linked to decreases in circulating suppressor inducer (CD4+2H4+) T-cells in multiple sclerosis. Ann Neurol 1988; 24: 185–91

    Article  PubMed  CAS  Google Scholar 

  13. Hauser SL, Dawson DM, Lehrich JR, et al. Intensive immunosuppression in progressive multiple sclerosis: a randomized three arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med 1983; 308: 173–80

    Article  PubMed  CAS  Google Scholar 

  14. Panitch HS, Hirsh RL, Haley AS, et al. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987; 1: 893–5

    Article  PubMed  CAS  Google Scholar 

  15. Waksman, B. Mechanisms in multiple sclerosis. Nature 1985; 318: 104–5

    Article  PubMed  CAS  Google Scholar 

  16. Antel JP, Arnason BGW, Medof ME. Suppressor cell function in multiple sclerosis: correlation with clinical disease activity. Ann Neurol 1979; 5: 338–42

    Article  PubMed  CAS  Google Scholar 

  17. Murray JE. Kidney transplantation in modified recipients. Ann Surg 1962; 156: 337–55

    Article  PubMed  CAS  Google Scholar 

  18. Tucker WG, Kapphahn KH. A preliminary evaluation of azathioprine (Imuran) in the treatment of multiple sclerosis. Henry Ford Hosp Med J; 17(2): 89–91

  19. Mertin J, Rudge P, Kremer M, et al. Double-blind controlled trial of immunosuppression in the treatment of multiple sclerosis: final report. Lancet 1982; 2: 351–4

    Article  PubMed  CAS  Google Scholar 

  20. British and Dutch Multiple Sclerosis Azathioprine Trial Group. Double-masked trial of azathioprine in multiple sclerosis. Lancet 1988; 2: 179–83

    Google Scholar 

  21. Milanese C, La Mantia L, Salmaggi A, et al. Double blind controlled randomized study on azathioprine efficacy in multiple sclerosis: preliminary results. Ital J Neurol Sci 1988; 9: 53–7

    Article  PubMed  CAS  Google Scholar 

  22. Goodkin DE, Bailly RC, Teetzen ML, et al. The efficacy of azathioprine in relapsing-remitting multiple sclerosis. Neurology 1991; 41: 20–25

    Article  PubMed  CAS  Google Scholar 

  23. Ellison GW, Myers LW, Mickey MR, et al. A placebo-controlled, randomized, double-masked, variable dosage, clinical trial of azathioprine with and without methylprednisolone in multiple sclerosis. Neurology 1989; 39: 1018–26

    Article  PubMed  CAS  Google Scholar 

  24. Yudkin PL, Ellison GW, Ghezzi A, et al. Overview of azathioprine treatment in multiple sclerosis. Lancet 1991; 338: 1051–5

    Article  PubMed  CAS  Google Scholar 

  25. Kinlen LJ. Incidence of cancer in rheumatoid arthritis and other disorders after immunosuppressive treatment. Am J Med 1985; 78(Suppl. 1A): 44–9

    Article  PubMed  CAS  Google Scholar 

  26. Goodkin DE, Daughtry MM, VanderBrug-Medendorp S. The incidence of malignancy following cyclophosphamide (CTX) or azathioprine (AZA) treatment of multiple sclerosis (MS). Ann Neurol 1992: 32: 257

    Google Scholar 

  27. Lisak RP, Zweiman B, Blanchard N, et al. Effective treatment with copolymer I on the in vivo and in vitro manifestations of experimental allergic encephalomyelitis. J Neuroimmunol 1983; 62: 281–93

    CAS  Google Scholar 

  28. Burns J, Littlefield K. Failure of copolymer I to inhibit the human T-cell response to myelin basic protein. Neurology 1991; 41: 1317–9

    Article  PubMed  CAS  Google Scholar 

  29. Teitelbaum D, Milo R, Arnon R, et al. Synthetic copolymer I inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci USA 1992; 89(1): 137–41

    Article  PubMed  CAS  Google Scholar 

  30. Racke MK, Martin R, McFarland H, et al. Copolymer-I-induced inhibition of antigen-specific T cell activation: interference with antigen presentation. J Neuroimmunol 1992; 37: 75–84

    Article  PubMed  CAS  Google Scholar 

  31. Bornstein MB, Miller A, Slagle S, et al. A pilot trial of COP I in exacerbating-remitting multiple sclerosis. N Engl J Med 1987; 317: 408–14

    Article  PubMed  CAS  Google Scholar 

  32. Bornstein MB, Miller MD, Slagle S, et al. A placebo controlled, double-blind, randomized, two-center, pilot trial of COP I in chronic progressive multiple sclerosis. Neurology 1991; 41: 533–9

    Article  PubMed  CAS  Google Scholar 

  33. Troiano R, Hafstein M, Ruderman M, et al. Effect of high dose intravenous steroid administration on contrast-enhancing computed tomographic scan lesion in multiple sclerosis. Ann Neurol 1984; 15: 257–63

    Article  PubMed  CAS  Google Scholar 

  34. Troiano R, Hafstein M, Zito G, et al. The effect of oral corticosteroid dosage on CT-enhancing multiple sclerosis plaques. J Neurol Sci 1985; 70: 67–72

    Article  PubMed  CAS  Google Scholar 

  35. Smith T, Seeberg I, Sjo O. Evoked potentials in multiple sclerosis before and after high dose methylprednisolone infusion. Eur Neurol 1986; 25: 67–73

    Article  PubMed  CAS  Google Scholar 

  36. Almawi WY, Sewell KL, Hadro ET, et al. Mode of action of the glucocorticosteroids as immunosuppressive agents. In: Molecular and cellular biology of cytokines. New York: Wiley-Liss, 1990: 321–6

    Google Scholar 

  37. Troiano R, Cook SD, Dowling PC. Steroid therapy in multiple sclerosis: point of view. Arch Neurol 1987; 44: 803–7

    Article  PubMed  CAS  Google Scholar 

  38. Whitakar JN, Layton BA, Herman PK, et al. Correlation of myelin basic protein-like material in cerebrospinal fluid of multiple sclerosis patients with their response to glucocorticoid treatment. Ann Neurol 1993; 33: 10–7

    Article  Google Scholar 

  39. Rose AS, Kuzma JW, Kurtzke JF, et al. Cooperative study in the evaluation of therapy in multiple sclerosis. ACTH vs placebo. Neurology 1970; 20(Pt II): 1–59

    PubMed  CAS  Google Scholar 

  40. Barnes MP, Bateman DE, Cleland PG, et al. Intravenous (IV) methylprednisolone for multiple sclerosis in relapse. J Neurol Neurosurg Psychiatry 1985; 48: 157–9

    Article  PubMed  CAS  Google Scholar 

  41. Thompson AJ, Kennard C, Swash M, et al. Relative efficacy of IV methylprednisolone and ACTH in the treatment of acute relapses in multiple sclerosis. Neurol 1989; 39: 969–71

    Article  CAS  Google Scholar 

  42. Fog T. The long-term treatment of multiple sclerosis with corticoids. Acta Neurol Scand 1965; 41 (13 Suppl.): 473–84

    Article  Google Scholar 

  43. Tourtellotte WW, Haerer AF. Use of oral corticosteroids in the treatment of multiple sclerosis: a double-blind study. Arch Neurol 1965; 12: 536–45

    Article  PubMed  CAS  Google Scholar 

  44. Millar JHD, Vas CJ, Naronha MJ, et al. Long-term treatment of multiple sclerosis with corticotropin. Lancet 1967; 2: 429–31

    Article  PubMed  CAS  Google Scholar 

  45. Rinne UK, Sonninen V, Tuovinen T. Corticotropin treatment in multiple sclerosis. Acta Neurol Scand 1968; 44: 207–18

    Article  PubMed  CAS  Google Scholar 

  46. Beck RW, Cleary PA, Trobe JD, et al. The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis. N Engl J Med 1993; 329: 1764

    Article  PubMed  CAS  Google Scholar 

  47. Smith ME, Stone LA, Albert PS, et al. Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopententate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 1993; 33(5): 480–7

    Article  PubMed  CAS  Google Scholar 

  48. Moody DJ, Fahey JL, Grable E, et al. Administration of monthly pulses of cyclophosphamide in multiple sclerosis patients: effects of long-term treatment on immunologic parameters. J Neuroimmunol 1987; 14: 161–73

    Article  PubMed  CAS  Google Scholar 

  49. Moody DJ, Fahey JL, Grable E, et al. Administration of monthly pulses of cyclophosphamide in multiple sclerosis patients: delayed recovery of several immune parameters following discontinuation of long-term cyclophosphamide treatment. J Neuroimmunol 1987; 14: 175–82

    Article  PubMed  CAS  Google Scholar 

  50. Uitehaag, BMJ Nillesen WM, Hommes OR. Long-lasting effects of cyclophosphamide on lymphocytes in peripheral blood and spinal fluid. Acta Neurol Scand 1989; 79: 12–7

    Article  Google Scholar 

  51. Carter JL, Hafler DA, Dawson DA, et al. Immunosuppression with high-dose IV cyclophosphamide and ACTH in progressive multiple sclerosis: cumulative six year experience in 164 patients. Neurology 1988; 38 (2 Suppl.): 9–14

    PubMed  CAS  Google Scholar 

  52. Goodkin DE, Plencner S, Palmer-Saxerud K, et al. Cyclophosphamide in chronic progressive multiple sclerosis: maintenance vs nonmaintenance therapy. Arch Neurol 1987; 44: 823–32

    Article  PubMed  CAS  Google Scholar 

  53. Weiner HL, Mackin GA, Orav JA, et al. Intermittent cyclophosphamide pulse therapy in progressive multiple sclerosis: final report of the Northeast Cooperative Multiple Sclerosis Treatment Group. Neurology 1993; 43: 910–8

    Article  PubMed  CAS  Google Scholar 

  54. Noseworthy JA, Vandervoort MK, Penman M, et al. Cyclophosphamide and plasma exchange in multiple sclerosis [letter]. Lancet 1991; 337: 1540–1

    Article  PubMed  CAS  Google Scholar 

  55. Likosky WH, Fireman B, Elmore R, et al. Intense immunosuppression in chronic progressive multiple sclerosis: the Kaiser study. J Neurol Neurosurg Psychiatry 1991; 54: 1055–60

    Article  PubMed  CAS  Google Scholar 

  56. The Canadian Cooperative Multiple Sclerosis Study Group. The Canadian cooperative trial of cyclophosphamide and plasma exchange in multiple sclerosis. Lancet 1991; 337: 441–6

    Google Scholar 

  57. Weiner HL, Hauser SL, Dawson DM, et al. Cyclophosphamide and plasma exchange in multiple sclerosis [letter]. Lancet 1991; 337: 1033–4

    Article  Google Scholar 

  58. Bach JF. Cyclosporine in autoimmune diseases. Transplant Proc 1989; 21: 97–113

    PubMed  CAS  Google Scholar 

  59. Faulds D, Goa KL, Benfield P. Cyclosporin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs 1993; 45: 953–1040

    Article  PubMed  CAS  Google Scholar 

  60. Reem GH, Cook LA, Vilck J. Gamma interferon synthesis by human thymocytes and T lymphocytes is inhibited by cyclosporine A. Science 1983; 221: 63–5

    Article  PubMed  CAS  Google Scholar 

  61. Hess AD, Tutschka PJ. Effects of cyclosporine A on human lymphocyte responses in vitro: I. CsA allows for the expression of alloantigen-activated suppressor cells while preferentially inhibiting the induction of cytolytic effector lymphocytes in MLR. J Immunol 1980; 124: 2601–9

    PubMed  CAS  Google Scholar 

  62. Kerman RH, Wolinsky JS, Nath A, et al. Serial immune evaluation of cyclosporine and placebo treated multiple sclerosis patients. J Neuroimmunol 1988; 18: 325–31

    Article  PubMed  CAS  Google Scholar 

  63. Kappos L, Patzold U, Poser S, et al. Cyclosporine versus azathioprine in the long-term treatment of multiple sclerosis: results of the German Multicenter Study. Ann Neurol 1988; 23: 56–63

    Article  PubMed  CAS  Google Scholar 

  64. Beyer JON. Cyclosporin therapy in multiple sclerosis [abstract]. Second International Congress on Cyclosporine; 1987 November 4–7: Washington. University of Texas Health Science Center, Organ Transplantation Center — Division of Continuing Education, 1987

  65. Rudge P, Koetsier JC, Mertin J, et al. Randomized double blind controlled trial of cyclosporine in multiple sclerosis. J Neurol Neurosurg Psychiatry 1989; 52: 559–65

    Article  PubMed  CAS  Google Scholar 

  66. Multiple Sclerosis Study Group. Efficacy and toxicity of cyclosporine in chronic progressive multiple sclerosis: a randomized, double-blinded, placebo-controlled clinical trial. Ann Neurol 1990; 27: 591–605

    Article  Google Scholar 

  67. Isaacs A, Lindenmann J. Virus interference I. The interferon. Proc R Soc Lond [Biol] 1957; 147: 258–273

    Article  CAS  Google Scholar 

  68. De Maeyer E, De Maeyer-Guignard J. Interferons and other regulatory cytokines. New York: John Wiley and Sons, 1988

    Google Scholar 

  69. Ransohoff RM. Regulation of class II major histocompatibility genes: relation to multiple sclerosis. Res Immunol 1989; 140: 202–7

    Article  PubMed  CAS  Google Scholar 

  70. Barna BP, Chou SM, Jacobs B, et al. Interferon-beta impairs induction of HLA-DR antigen expression in cultured adult human astrocytes. J Neuroimmunol 1989; 23: 45–53

    Article  PubMed  CAS  Google Scholar 

  71. Inaba K, Kitaura M, Kato T, et al. Contrasting effects of alpha/beta- and gamma-interferons on expression of macrophage Ia antigens. J Exp Med 1986; 163: 1030–5

    Article  PubMed  CAS  Google Scholar 

  72. Ling PD, Warren MK, Vogel SN. Antagonistic effect of interferon-beta on the interferon-gamma-induced expression of Ia antigen in murine macrophages. J Immunol 1985; 135: 1857–64

    PubMed  CAS  Google Scholar 

  73. Stiehm ER, Kronenberg LH, Rosenblatt HM, et al. Interferon: immunobiology and clinical significance. Ann Intern Med 1982; 96: 80–93

    PubMed  CAS  Google Scholar 

  74. Merigan TC, Rand KH, Pollard RB, et al. Human leukocyte interferon for the treatment of herpes zoster in patients with cancer. N Engl J Med 1978; 298; 981–7

    Article  PubMed  CAS  Google Scholar 

  75. Neighbor PA, Bloom BR. Absence of virus-induced lymphocyte suppression and interferon production in multiple sclerosis. Proc Natl Acad Sci USA 1979; 76: 476–80

    Article  Google Scholar 

  76. Jacobs L, O’Malley J, Freeman A, et al. Intrathecal interferon reduces exacerbations of multiple sclerosis. Science 1981; 214: 1026–8

    Article  PubMed  CAS  Google Scholar 

  77. Flenniken, A, Galabru J, Rutherford M, et al. Expression of interferon-induced genes in different tissues of mice. J Virol 1988; 62: 3077–83

    PubMed  CAS  Google Scholar 

  78. Wong GH, Bartlett PF, Clark LI, et al. Inducible expression of H-2 and Ia antigens on brain cells. Nature 1984; 310: 688–91

    Article  PubMed  CAS  Google Scholar 

  79. Jacobs L, Salazar AM, Herndon R, et al. Intrathecally administered natural human fibroblast interferon reduces exacerbations of multiple sclerosis. Results of a multicenter, double-blind study. Arch Neurol 1987; 44: 589–95

    Article  PubMed  CAS  Google Scholar 

  80. INFB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43: 655–61

    Article  Google Scholar 

  81. Paty DW, Li DKB, UBC MS/MRI Study group, et al. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43: 662–7

    Article  PubMed  CAS  Google Scholar 

  82. Faulds D, Benfield P. Interferon beta-1b in multiple sclerosis: an initial review of its rationale for use and therapeutic potential. Clin Immunother 1993; 1: 79–87

    Article  Google Scholar 

  83. Khatri BO, Mc Quillen MP, Harrington GJ, et al. Chronic progressive multiple sclerosis: double blind controlled trial of plasmapheresis in patients taking immunosuppressive drugs. Neurology 1985; 35: 312–9

    Article  PubMed  CAS  Google Scholar 

  84. Tindall R. A closer look at plasmapheresis in multiple sclerosis: the cons. Neurology 1988; 38 (II Suppl.): 53–6

    PubMed  CAS  Google Scholar 

  85. Khatri BO, McQuillen MP, Hoffman RG, et al. Plasmapheresis in chronic progressive ms: a long term study. Neurol 1991; 41: 409–14

    Article  CAS  Google Scholar 

  86. Weiner HL, Dau PC, Khatri BO, et al. Double-blind study of true vs. sham plasma exchange in patients treated with immunosuppression for acute attacks of multiple sclerosis. Neurology 1989; 39: 1143–9

    Article  PubMed  CAS  Google Scholar 

  87. Rodriguez M, Karnes WE, Bartleson JD, et al. Plasmapheresis in acute episodes of fulminant CNS inflammatory demyelination. Neurology 1993; 43: 1100–4

    Article  PubMed  CAS  Google Scholar 

  88. Slavin SB, Reitz CP, Bieber HS, et al. Transplantation tolerance in adult rats using total lymphoid irradiation: permanent survival of skin, heart, and marrow allografts. J Exp Med 1978; 147: 700–7

    Article  PubMed  CAS  Google Scholar 

  89. Zvaifler NJ. Fractionated total lymphoid irradiation: a promising new treatment for rheumatoid arthritis? Yes, no, maybe. Arthritis Rheum 1987; 30: 109–14

    Article  PubMed  CAS  Google Scholar 

  90. Field EDS, Strober RT, Hoppe A, et al. Sustained improvement of intractable rheumatoid arthritis after total lymphoid irradiation. Arthritis Rheum 1983; 26; 937–46

    Article  PubMed  CAS  Google Scholar 

  91. Cook SD, Troiano R, Zito G, et al. Effect of total lymphoid irradiation in chronic progressive multiple sclerosis. Lancet 1986; 1: 1405–11

    Article  PubMed  CAS  Google Scholar 

  92. Cook SD, Devereux C, Troiano R. The treatment of patients with chronic progressive multiple sclerosis with total lymphoid irradiation. In: Cook SD (editor). Handbook of multiple sclerosis. New York: Marcel Dekker, Inc., 1990: 402–23

    Google Scholar 

  93. Strober S, Kotzin B, Field E, et al. Treatment of autoimmune disease with total lymphoid irradiation: cellular humoral mechanisms. Ann NY Acad Sci 1986; 475: 285–95

    Article  PubMed  CAS  Google Scholar 

  94. Weiner HL, Hafler DA. Immunotherapy of multiple sclerosis. Ann Neurol 1988; 23: 211–22

    Article  PubMed  CAS  Google Scholar 

  95. Troiano R, Devereux C, Oleske J. T cell subsets and disease progression after total lymphoid irradiation in chronic progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 1988; 51: 980–3

    Article  PubMed  CAS  Google Scholar 

  96. Steinman L. Autoimmune disease. Sci Am 1993; 269: 107–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinkel, R.P., Goodkin, D.E. Immunotherapy for Multiple Sclerosis. Clin. Immunother. 1, 117–134 (1994). https://doi.org/10.1007/BF03258498

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258498

Keywords

Navigation