Skip to main content

Advertisement

Log in

Immunomodulators in Bacterial and Fungal Infections

A Review of Their Therapeutic Potential

  • Review Article
  • Disease Treatment Review
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Despite the development of new and powerful antimicrobial drugs, the therapy of severe bacterial and fungal infections remains a problem in immunocompromised patients. In these patients, defective host defence mechanisms preclude adequate clearance of micro-organisms, and alternative ways are being sought to restore host resistance.

Recently, a variety of cytokines and growth factors have been isolated that play an important regulatory role in host defence against infection. Administration of these factors to experimental animals has been shown to be beneficial in various models of infection.

Injection of a single dose of interleukin-1 or tumour necrosis factor-α protects animals from infection with a variety of micro-organisms, including Gram negative bacteria, protozoa and fungi. The mechanism by which these cytokines induce their beneficial effects has not yet been elucidated. However, the extensive experimental data suggest that induction of humoral factors and modulation of cytokine receptor expression may be important in this respect.

For other cytokines, such as interleukin-12 and interferon-γ, protection against facultative intracellular micro-organisms is probably mediated by induction of cellular immunity and macrophage activation. However, other mechanisms, such as activation of polymorphonuclear leucocytes and interaction with other types of cells, also appear to play a role in interferon-γ-induced protection.

Some of the cytokines, such as interferon-γ, interleukin-2 and the colony-stimulating factors, are currently being used in the therapy of infection in humans. Whether interleukin-1 or tumour necrosis factor-α can be used for treatment of infections needs careful investigation because of their potential adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubos RJ, Schaedler RW. Effects of cellular constituents of mycobacteria on the resistance of mice to heterologous infections. J Exp Med 1957; 106: 703–17

    Article  PubMed  CAS  Google Scholar 

  2. Sher NA, Chaparas SD, Greenberg LE, et al. Effects of BCG, Corynebacterium parvum, and methanol-extraction residue in the reduction of mortality from Staphylococcus aureus and Candida albicans infections in immunosuppressed mice. Infect Immun 1975; 12: 1325–30

    PubMed  CAS  Google Scholar 

  3. Van’t Wout JW, Poell R, Van Furth R. The role of BCG-PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand J Immunol 1992; 36: 713–19

    Article  Google Scholar 

  4. Van Dissel JT, Stikkelbroeck JJM, Van den Barselaar MT, et al. Divergent changes in antimicrobial activity after immunologic activation of mouse peritoneal macrophages. J Immunol 1987; 139: 1665–72

    PubMed  Google Scholar 

  5. Adlam C, Broughton ES, Scott MT. Enhanced resistance of mice to infection with bacteria following pre-treatment with Corynebacterium parvum. Nature New Biol 1972; 235: 219–22

    Article  PubMed  CAS  Google Scholar 

  6. Vecchiarelli A, Cenci E, Puliti M, et al. Protective immunity induced by low-virulence Candida albicans: cytokine production in the development of the anti-infectious state. Cell Immunol 1989; 124: 334–44

    Article  PubMed  CAS  Google Scholar 

  7. Cluff LE. Effects of endotoxins on susceptibility to infections. J Infect Dis 1970; 122: 205–16

    Article  PubMed  CAS  Google Scholar 

  8. Williams DL, Browder IW, DiLuzio NR. Immunotherapeutic modification of Escherichia coli-induced experimental peritonitis and bacteremia by glucan. Surgery 1983; 93: 448–54

    PubMed  CAS  Google Scholar 

  9. Madonna GS, Ledney D, Elliott TB, et al. Trehalose dimycolate enhances resistance to infection in neutropenic animals. Infect Immun 1989; 57: 2495–501

    PubMed  CAS  Google Scholar 

  10. Parant M, Riveau G, Parant F, et al. Effect of indomethacin on increased resistance to bacterial infection and on febrile responses induced by muramyl dipeptide. J Infect Dis 1980: 142: 708–15

    Article  PubMed  CAS  Google Scholar 

  11. Phillips NC, Chedid L. Anti-infectious activity of liposomal muramyl dipeptides in immunodeficient CB A/N mice. Infect Immun 1987; 55: 1426–30

    PubMed  CAS  Google Scholar 

  12. Oppenheim JJ, Togawa A, Chedid L, et al. Components of mycobacteria and muramyl dipeptide with adjuvant activity induce lymphocyte activating factor. Cell Immunol 1980; 50: 71–81

    Article  PubMed  CAS  Google Scholar 

  13. Green S, Dobrjansky A, Chiasson MA, et al. Corynebacterium parvum as the priming agent of tumor necrosis factor in the mouse. J Natl Cancer Inst 1977; 59: 1519–29

    PubMed  CAS  Google Scholar 

  14. Kampschmidt RF, Pulliam LA. Stimulation of antimicrobial activity in the rat with leukocyte endogenous mediator. J Reticuloendothel Soc 1975; 17: 162–69

    PubMed  CAS  Google Scholar 

  15. Dinarello CA. Interleukin-1. Rev Infect Dis 1984; 6: 51–95

    Article  PubMed  CAS  Google Scholar 

  16. Dinarello CA, Cannon JG, Mier JW, et al. Multiple biological activities of human recombinant interleukin-1. J Clin Invest 1986; 77: 1734–39

    Article  PubMed  CAS  Google Scholar 

  17. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachexin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 1985; 229: 869–71

    Article  PubMed  CAS  Google Scholar 

  18. Tracey KJ, Lowry SF, Fahey TJ, et al. Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet 1987; 164: 415–422

    PubMed  CAS  Google Scholar 

  19. Cannon JG, Thompkins RG, Gelfand JA, et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 1990; 161: 79–84

    Article  PubMed  CAS  Google Scholar 

  20. Alexander HR, Doherty GM, Buresh C, et al. A recombinant receptor antagonist to interleukin-1 improves survival after lethal endotoxemia in mice. J Exp Med 1991; 173: 1029–32

    Article  PubMed  CAS  Google Scholar 

  21. Waage A, Aasen AO. Different role of cytokine mediators on septic shock related to meningococcal disease and surgery/polytrauma. Immunol Rev 1992; 127: 221–30

    Article  PubMed  CAS  Google Scholar 

  22. Dinarello CA. Role of interleukin-1 in infectious diseases. Immunol Rev 1992; 127: 119–46

    Article  PubMed  CAS  Google Scholar 

  23. Oppenheim JJ, Kovacs EJ, Matsushima K, et al. There is more than one interleukin-1. Immunol Today 1986; 7: 45–56

    Article  CAS  Google Scholar 

  24. Dinarello CA, Cannon JG, Wolff SM. New concepts on the pathogenesis of fever. Rev Infect Dis 1988; 10: 168–89

    Article  PubMed  CAS  Google Scholar 

  25. Dinarello CA. Interleukin-1. FASEB J 1988; 2: 108–15

    PubMed  CAS  Google Scholar 

  26. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–52

    PubMed  CAS  Google Scholar 

  27. Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 1984; 311: 1413–9

    Article  PubMed  CAS  Google Scholar 

  28. Ozaki Y, Ohashi A, Minami A, et al. Enhanced resistance of mice to bacterial infection induced by recombinant human interleukin-1a. Infect Immun 1987; 55: 1436–40

    PubMed  CAS  Google Scholar 

  29. van der Meer JWM, Barza M, Wolff SM, et al. A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal Gram-negative infection. Proc Natl Acad Sci USA 1988; 85: 1620–23

    Article  PubMed  Google Scholar 

  30. Minami A, Fujimoto K, Ozaki Y, et al. Augmentation of host resistance to microbial infections by recombinant human interleukin-1α. Infect Immun 1988; 56: 3116–20

    PubMed  CAS  Google Scholar 

  31. Morikage T, Misushima Y, Sakamoto K, et al. Prevention of fatal infections by recombinant human interleukin-1α in normal and anticancer drug-treated mice. Cancer Res 1990; 50: 2099–104

    PubMed  CAS  Google Scholar 

  32. Campanile F, Binaglia L, Boraschi D, et al. Antibacterial resistance induced by recombinant interleukin-1 in myelosuppressed mice: effect of treatment schedule and correlation with colony-stimulating activity in the bloodstream. Cell Immunol 1990; 128: 250–60

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura S, Minami A, Fujimoto K, et al. Combination effect of recombinant human interleukin-1α with antimicrobial agents. Antimicrob Agents Chemother 1989; 33: 1804–10

    Article  PubMed  CAS  Google Scholar 

  34. van der Meer JWM. The effects of recombinant interleukin-1 and recombinant tumor necrosis factor on non-specific resistance to infection. Biotherapy 1988; 1: 19–25

    Article  PubMed  Google Scholar 

  35. McIntyre KW, Unowsky J, DeLorenzo W, et al. Enhancement of antibacterial resistance of neutropenic bone marrow-suppressed mice by interleukin-1α. Infect Immun 1989; 57: 48–54

    PubMed  CAS  Google Scholar 

  36. Morrissey PJ, Charrier K. Interleukin-1 administration to C3H/HeJ mice after but not prior to infection increases resistance to Salmonella typhimurium. Infect Immun 1991; 59: 4729–31

    PubMed  CAS  Google Scholar 

  37. Pelkonen S, Pluschke G. Recombinant interleukin-1 stimulates clearance of Escherichia coli bacteremia. Microb Pathog 1989; 6: 415–24

    Article  PubMed  CAS  Google Scholar 

  38. Gladue R, Girard A, Newborg M. Enhanced antibacterial resistance in neutropenic mice treated with human recombinant interleukin-1 beta. Agents Actions 1988; 24: 130–6

    Article  PubMed  CAS  Google Scholar 

  39. Czuprynski CJ, Brown JF. Purified human and recombinant murine interleukin-1 induced accumulation of inflammatory peritoneal neutrophils and mononuclear phagocytes: possible contributions to antibacterial resistance. Microb Pathog 1987; 3: 377–86

    Article  PubMed  CAS  Google Scholar 

  40. Czuprynski CJ, Brown JE. Recombinant murine interleukin-1α enhancement of nonspecific antibacterial resistance. Infect Immun 1987; 55: 2061–5

    PubMed  CAS  Google Scholar 

  41. Czuprynski CJ, Brown JF, Young KM, et al. Effects of murine recombinant interleukin 1 alpha on the host response to bacterial infection. J Immunol 1988; 140: 962–8

    PubMed  CAS  Google Scholar 

  42. Kurtz RS, Young KM, Czuprynski CJ. Separate and combined effects of recombinant interleukin-1α and gamma interferon on antibacterial resistance. Infect Immun 1989; 57: 553–8

    PubMed  CAS  Google Scholar 

  43. Kurtz RS, Roll JT, Czuprynski CJ. Recombinant human interleukin 1 alpha enhances anti-Listeria resistance in both genetically resistant and susceptible strains of mice. Immunol Lett 1988; 18: 289–92

    Article  PubMed  CAS  Google Scholar 

  44. Curfs JHAJ, van der Meer JWM, Sauerwein RW, et al. Low dosages of interleukin-1 protect mice against lethal cerebral malaria. J Exp Med 1990; 172: 1287–91

    Article  PubMed  CAS  Google Scholar 

  45. Van’t Wout JW, van der Meer JWM, Barza M, et al. Protection of neutropenic mice from lethal Candida albicans infection by recombinant interleukin 1. Eur J Immunol 1988; 18: 1143–6

    Article  Google Scholar 

  46. Pecyk RA, Fraser-Smith EB, Matthews TR. Efficacy of interleukin-1β against systemic Candida albicans infections in normal and immunosuppressed mice. Infect Immun 1989; 57: 3257–8

    PubMed  CAS  Google Scholar 

  47. Kullberg BJ, Van’ t Wout JW, Van Furth R. Role of granulocytes in enhanced host resistance to Candida albicans induced by recombinant interleukin-1. Infect Immun 1990; 58: 3319–24

    PubMed  CAS  Google Scholar 

  48. Alexander HR, Doherty GM, Fraker DL, et al. Human recombinant interleukin-1α protection against the lethality of endotoxin and experimental sepsis in mice. J Surg Res 1991; 50: 421–4

    Article  PubMed  CAS  Google Scholar 

  49. Dinarello CA, Krueger JM. Induction of interleukin-1 by synthetic and naturally occurring muramyl peptides. FASEB J 1986; 45: 2545–8

    CAS  Google Scholar 

  50. Vogels MTE, van der Meer JWM. Use of immune modulators in nonspecific therapy of bacterial infections. Antimicrob Agents Chemother 1992; 36: 1–5

    Article  PubMed  CAS  Google Scholar 

  51. Kullberg BJ, Van’ t Wout JW, Poell RJM, et al. Combined effect of fluconazole and recombinant human interleukin-1 on systemic candidiasis in mice. Antimicrob Agents Chemother 1992; 36: 1225–9

    Article  PubMed  CAS  Google Scholar 

  52. Georgilis K, Schaeffer C, Dinarello CA, et al. Human recombinant interleukin-1β has no effect on intracellular calcium or on functional responses of human neutrophils. J Immunol 1987; 138: 3403–7

    PubMed  CAS  Google Scholar 

  53. Yoshimura T, Matsushima K, Oppenheim JJ, et al. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterisation and separation from interleukin-1 (IL1). J Immunol 1987; 139: 788–93

    PubMed  CAS  Google Scholar 

  54. Kullberg BJ, Van’ t Wout JW, Van Furth R. No effect of recombinant human interleukin-1 on the numbers of peripheral blood and peritoneal leukocytes during an acute inflammation. Inflammation 1991; 15: 457–70

    Article  PubMed  CAS  Google Scholar 

  55. van der Meer JWM, Helle M, Aarden L. Comparison of the effects of recombinant interleukin 6 and recombinant interleukin 1 in nonspecific resistance to infection. Eur J Immunol 1989; 19: 413–6

    Article  PubMed  Google Scholar 

  56. Vogels MTE, Lindley IJD, Curfs JAHJ, et al. Effects of interleukin-8 on non-specific resistance to infection in neutropenic and normal mice. Antimicrob Agents Chemother 1993; 37: 276–80

    Article  PubMed  CAS  Google Scholar 

  57. Vogels MTE, Sweep CGJ, Hermus ARMM, et al. Interleukin-1-induced nonspecific resistance to bacterial infection in mice is not mediated by glucocorticosteroids. Antimicrob Agents Chemother 1992; 36: 2785–9

    Article  PubMed  CAS  Google Scholar 

  58. Vogels MTE, Cantoni L, Carelli M. The role of acute phase proteins in the interleukin-1-induced resistance to bacterial infection in mice. Antimicrob Agents Chemother 1993; In press

    Google Scholar 

  59. Ye K, Clark BD, Dinarello CA. Interleukin-1 downregulates gene and surface expression of interleukin-1 receptor type I by destabilising its mRNA, whereas interleukin-2 increases its expression. Immunology 1992; 75: 427–34

    PubMed  CAS  Google Scholar 

  60. Holtmann H, Wallach D. Down regulation of the receptors for tumor necrosis factor by interleukin-1 and 4β.phorbol-12-myristate-13-acetate. J Immunol 1987; 139: 1161–7

    PubMed  CAS  Google Scholar 

  61. Beekhuizen H, Corsel-van Tilburg AJ, Blokland I, et al. Characterization of the adherence of human monocytes to cytokine-stimulated human macrovascular endothelial cells. Immunology 1991; 74: 661–9

    PubMed  CAS  Google Scholar 

  62. Pettipher R, Henderson B. Inflammatory activities of locally or systemically administered interleukin-1. In: Bomford R, Henderson B, editors. Interleukin-1, inflammation and disease. Amsterdam: Elsevier, 1989: 218–28

    Google Scholar 

  63. Stork LC, Peterson VM, Rundus CH, et al. Interleukin-1 enhances murine granulopoiesis in vivo. Exp Hematol 1988; 16: 163–7

    PubMed  CAS  Google Scholar 

  64. Fibbe WE, van der Meer JWM, Falkenburg JHF, et al. A single low dose of human recombinant interleukin 1 accelerates the recovery of neutrophils in mice cyclophosphamide-induced neutropenia. Exp Hematol 1989; 17: 805–8

    PubMed  CAS  Google Scholar 

  65. Langermans JAM, van der Hulst MEB, Nibbering PH, et al. IFN-γ-induced L-argininie-dependent toxoplasmastatic activity in murine peritonial macrophages is mediated by endogenous tumor necrosis factor-α. J Immunol 1992; 148: 568–74

    PubMed  CAS  Google Scholar 

  66. Waage A, Brandtzaeg P, Halstensen A, et al. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 1989; 169: 333–8 interleukin-1

    Article  PubMed  CAS  Google Scholar 

  67. Dinarello CA, Clark BD, Puren AJ, et al. The interleukin-1 receptor. Immunol Today 1989: 10; 49–51

    Article  PubMed  CAS  Google Scholar 

  68. Neta R, Oppenheim JJ, SD Interdependence of the radioprotective effects of human recombinant interleukin-1α,tumor necrosis factor-α, granulocyte colony-stimulating factor, and munne recombinant granulocyte macrophage colony-stimulating factor. J Immunol 1988; 140: 108–14

    PubMed  CAS  Google Scholar 

  69. White CW, Ghezzi P. Protection against pulmonary oxygen toxicity by interleukin-1 and tumor necrosis factor. Role of antioxidant enzymes and effect of cyclooxygenase inhibitors. Biotherapy 1989; 1: 361–6

    Article  PubMed  CAS  Google Scholar 

  70. Brown J, White CW, Terada LS, et al. Interleukin-1 pretreatment decreases ischaemia reperfusion injury. Proc Natl Acad Sci USA 1990; 87: 5026–30 en5erg sa Decrease in interleukin

    Article  PubMed  CAS  Google Scholar 

  71. Puri RK, Travis WD, Rosenberg SA. Decrease in interleukin 2-induced leakage in the lungs of mice by administration of recombinant interleukin-1α in vivo. Cancer Res 1989; 49: 969–76

    PubMed  CAS  Google Scholar 

  72. Beutler B, Cerami A. Cachectin/tumor necrosis factor: an endogenous mediator of shock and inflammation. Immunol Res 1986; 5: 281–93

    Article  PubMed  CAS  Google Scholar 

  73. Dinarello CA, Cannon JG, Wolff SM. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin-1. J Exp Med 1986; 163: 1433–50

    Article  PubMed  CAS  Google Scholar 

  74. Cerami A, Beutler B. The role of cachectin/TNF in endotoxic shock and cachexia. Immunol Today 1988; 9: 28–31

    Article  PubMed  CAS  Google Scholar 

  75. Tracey KJ, Beutler B, Lowry SF. Shock and tissue injury induced by recombinant human cachectin. Science 1986; 234: 470–4

    Article  PubMed  CAS  Google Scholar 

  76. Opal SM, Cross AS, Kelly NM, et al. Efficacy of a monoclonal antibody directed against tumor necrosis factor in protecting neutropenic rats from lethal infection with Pseudomonas aeruginosa. J Infect Dis 1990; 161: 1148–52

    Article  PubMed  CAS  Google Scholar 

  77. Exley AR, Cohen J, Buurman WA, et al. Monoclonal antibody to TNF in severe septic shock. Lancet 1990; 335: 1275–7

    Article  PubMed  CAS  Google Scholar 

  78. Figari IS, Mori NA, Palladino MA Jr. Regulation of neutrophil migration and Superoxide production by recombinant tumor necrosis factors-α and -β: comparison to recombinant interferon-γ and interleukin-1α. Blood 1987; 70: 979–84

    PubMed  CAS  Google Scholar 

  79. Ulich TR, del Castillo J, Guo K, et al. The hematologic effects of chronic administration of the monokines tumor necrosis factor, interleukin-1, and granulocyte-colony stimulating factor on bone marrow and circulation. Am J Pathol 1989; 134: 149–59

    PubMed  CAS  Google Scholar 

  80. Seow WK, Thong YH, Ferrante A. Macrophage-neutrophil interactions: contrasting effects of the monokines interleukin-1 and tumour necrosis factor (cachectin) on human neutrophil adherence. Immunology 1987; 62: 357–61

    PubMed  CAS  Google Scholar 

  81. Steinbeck MA, Roth JA. Neutrophil activation by recombinant cytokines. Rev Infect Dis 1989; 11: 549–68

    Article  PubMed  CAS  Google Scholar 

  82. Nacy CA, Meierovics AI, Belosevic M, et al. Tumor necrosis factor-alpha: central regulatory cytokine in the induction of macrophage antimicrobial activities. Pathobiology 1991; 59: 182–4

    Article  PubMed  CAS  Google Scholar 

  83. Nakane A, Minagawa T, Kato K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance agains Listeria monocytogenes infection. Infect Immun 1988; 56: 2563–9

    PubMed  CAS  Google Scholar 

  84. Kindler V, Sappino AP, Grau GE, et al. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989; 56: 731–40

    Article  PubMed  CAS  Google Scholar 

  85. Echtenacher B, Falk W, Mannel DN, et al. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J Immunol 1990; 145: 3762–6

    PubMed  CAS  Google Scholar 

  86. Green SJ, Crawford RM, Hockmeyer JT, et al. Leishmania major amastigotes initiate the L-arginine dependent killing mechanism in IFN-γ-stimulated macrophages by induction of TNF-α. J Immunol 1990; 145: 4290–7

    PubMed  CAS  Google Scholar 

  87. Titus RG, Sherry B, Cerami A. Tumor necrosis factor plays a protective role in experimental murine cutaneous leishmaniasis. J Exp Med 1989; 170: 2097–104

    Article  PubMed  CAS  Google Scholar 

  88. Liew FY, Parkinson C, Millott S, et al. Tumor necrosis factor in leishmaniasis. 1. TNFα mediates host protection in cutaneous leishmaniasis. Immunology 1990; 69: 570–3

    PubMed  CAS  Google Scholar 

  89. Silva CL, Faccioli LH. TNF and macrophage activation are essential for host resistance to Nocardia brasiliensis infection. Eur Cytokine Netw 1992; 3: 241

    Google Scholar 

  90. Grau GE, Fajardo LF, Piguet PF, et al. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 1987; 237: 1210–2

    Article  PubMed  CAS  Google Scholar 

  91. Stevenson MM, Ghadirian E. Human recombinant tumor necrosis factor alpha protects susceptible A/J mice against lethal Plasmodium chabaudi AS infection. Infect Immun 1989; 57: 3936–9

    PubMed  CAS  Google Scholar 

  92. Taverne J, Tavernier J, Fiers W, et al. Recombinant tumour necrosis factor inhibits malaria parasites in vivo but not in vitro. Clin Exp Immunol 1987; 67: 1–4

    PubMed  CAS  Google Scholar 

  93. Williams DM, Magee DM, Bonewald LF, et al. A role in vivo for tumor necrosis factor alpha in host defense against Chlamydia trachomatis. Infect Immun 1990; 58: 1572–6

    PubMed  CAS  Google Scholar 

  94. Alexander HR, Sheppard BC, Jensen JC, et al. Treatment with recombinant human tumor necrosis factor-alpha protects rats against the lethality, hypotension, and hypothermia of Gram-negative sepsis. J Clin Invest 1991; 88: 34–9

    Article  PubMed  CAS  Google Scholar 

  95. Cross AS, Sadoff JC, Kelly N, et al. Pretreatment with recombinant murine tumor necrosis factor α/cachectin and murine recombinant interleukin-1α protects mice from lethal bacterial infection. J Exp Med 1989; 169: 2021–7

    Article  PubMed  CAS  Google Scholar 

  96. Parant F, Tavernier J, Fiers W, et al. Comparative activity of human and murine tumor necrosis factor in toxicity and anti-infectious assays in mice. Microb Pathog 1990; 8: 143–9

    Article  PubMed  CAS  Google Scholar 

  97. Vaudaux P, Grau GE, Huggler E, et al. Contribution of tumor necrosis factor to host defense against staphylococci in a guinea pig model of foreign body infections. J Infect Dis 1992; 166: 58–64

    Article  PubMed  CAS  Google Scholar 

  98. Havell EA. Production of tumor necrosis factor during murine listeriosis. J Immunol 1987; 139: 4225–31

    PubMed  CAS  Google Scholar 

  99. Desiderio JV, Kiener PA, Lin FP, et al. Protection of mice against Listeria monocytogenes infection by recombinant human tumor necrosis factor. Infect Immun 1989; 57: 1615–7

    PubMed  CAS  Google Scholar 

  100. Nauciel C, Espinasse-Maes F. Role of gamma-interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun 1992; 60: 450–4

    PubMed  CAS  Google Scholar 

  101. Blanchard DK, Djeu JY, Klein TW, et al. Protective effect of tumor necrosis factor in experimental Legionella pneumophila infections of mice via activation of PMN function. J Leukocyte Biol 1988; 43: 429–35

    PubMed  CAS  Google Scholar 

  102. Bermudez LEM, Young LS. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-γ, is associated with macrophage killing of Mycobacterium avium complex. J Immunol 1988; 140: 3006–13

    PubMed  CAS  Google Scholar 

  103. Bermudez LEM, Stevens P, Kolonoski P, et al. Treatment of experimental disseminated Mycobacterium avium complex infection in mice with recombinant IL-2 and tumor necrosis factor. J Immunol 1989; 143: 2996–3000

    PubMed  CAS  Google Scholar 

  104. Steinshamn S, Waage A. Tumor necrosis factor and interleukin-6 in Candida albicans infection in normal and granulocytopenic mice. Infect Immun 1992; 60: 4003–8

    PubMed  CAS  Google Scholar 

  105. Djeu JY, Blanchard DK, Halkias D, et al. Growth inhibition of Candida albicans by human polymorphonuclear neutrophils: activation by interferon-γ and tumor necrosis factor. J Immunol 1986; 137: 2980–4

    PubMed  CAS  Google Scholar 

  106. Ferrante A. Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity: increased fungal activity against Torulopsis glabrata and Candida albicans and associated increases in oxigen radical production and lysosomal enzyme release. Infect Immun 1989; 57: 2115–22

    PubMed  CAS  Google Scholar 

  107. Seckinger P, Isaaz S, Dayer JM. A human inhibitor of tumor necrosis factor α. J Exp Med 1988; 167: 1511–6

    Article  PubMed  CAS  Google Scholar 

  108. Buchmeier NA, Schreiber RD. Requirement of endogenous interferon-γ production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci USA 1985; 82: 7404–8

    Article  PubMed  CAS  Google Scholar 

  109. McCabe RE, Luft BJ, Remington JS. Effect of murine interferon gamma on murine toxoplasmosis. J Infect Dis 1984; 150: 961–2

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki Y, Conley FK, Remington JS. Treatment of toxoplasmic encephalitis in mice with recombinant gamma-interferon. Infect Immun 1990; 58: 3050–5

    PubMed  CAS  Google Scholar 

  111. Nacy CA, Fortier AH, Meltzer MS, et al. Macrophage activation to kill Leishmania major: activation of macrophages for intracellular destruction of amastigotes can be induced by both recombinant interferon-γ and non-interferon lymphokines. J Immunol 1985; 144: 3505–11

    Google Scholar 

  112. McCabe R, Meagher S, Mullins B. Gamma-interferon suppresses acute and chronic Trypanosoma cruzi infection in cyclosporin-treated mice. Infect Immun 1991; 59: 1633–8

    PubMed  CAS  Google Scholar 

  113. McCabe R, Meagher S, Mullins B. Endogenous interferon-γ, macrophage activation, and murine host defense against acute infection with Trypanosoma cruzi. J Infect Dis 1991; 163: 912–5

    Article  PubMed  CAS  Google Scholar 

  114. Reed SG. In vivo administration of IFN-γ induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections. J Immunol 1988; 140: 4342–7

    PubMed  CAS  Google Scholar 

  115. Ferreira A, Schofield L, Enea V, et al. Inhibition of development of exoerythrocytic forms of malaria parasite by γ-interferon. Science 1986; 232: 881–4

    Article  PubMed  CAS  Google Scholar 

  116. Beck JM, Liggitt HD, Brunette EN, et al. Reduction in intensity of Pneumocystis carinii pneumonia in mice by aerosol administration of gamma interferon. Infect Immun 1991; 59: 3859–62

    PubMed  CAS  Google Scholar 

  117. Shear HL, Valladares G, Narachi MA. Enhanced treatment of Pneumocystis carinii pneumonia in rats with interferon-γ and reduced doses of trimethoprim/sulfamethoxazole. J Acquir Immune Defic Syndr 1990; 3: 943–8

    PubMed  CAS  Google Scholar 

  118. Kiderlen A, Kauffmann HE, Lohmann-Matthes ML. Protection of mice against the intracellular bacterium Listeria monocytogenes by recombinant immune interferon. Eur J Immunol 1984; 14: 964–7

    Article  PubMed  CAS  Google Scholar 

  119. Langermans JAM, Van der Hulst MEB, Nibbering PH, et al. Intravenous injection of IFN-γ inhibits the proliferation of Listeria monocytogenes in the liver but not in the spleen and peritoneal cavity. Immunology 1992; 77: 354–61

    PubMed  CAS  Google Scholar 

  120. Portnoy DA, Schreiber RD, Connelly P, et al. γ-Interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. J Exp Med 1989; 170: 2141–6

    Article  PubMed  CAS  Google Scholar 

  121. Muotiala A, Makela PH. The role of IFN-γ in murine Salmonella typhimurium infection. Microb Pathog 1990; 8: 135–41

    Article  PubMed  CAS  Google Scholar 

  122. Klein TW, Yamamoto Y, Brown HK, et al. Interferon-γ induced resistance to Legionella pneumophila in susceptible A/J mouse macrophages. J Leukocyte Biol 1991; 49: 98–103

    PubMed  CAS  Google Scholar 

  123. Edwards CK III, Hedegard HB, Zlotnik A. Chronic infection due to Mycobacterium intracellulare in mice: association with macrophage release of prostaglandin E2 and reversal by injection of indomethacin, muramyl dipeptide, or interferon-γ. J Immunol 1986; 136: 1820–7

    PubMed  CAS  Google Scholar 

  124. Canning PC, Roth JA. Effects of in vitro and in vivo administration of recombinant bovine interferon-γ on bovine neutrophil responses to Brucella abortus. Vet Immunol Immunopathol 1989; 20: 119–33

    Article  PubMed  CAS  Google Scholar 

  125. Byrne GI, Grubbs B, Marshall TJ, et al. Gamma interferon-mediated cytotoxicity related to murine Chlamydia trachomatis infection. Infect Immun 1988; 56: 2023–7

    PubMed  CAS  Google Scholar 

  126. Kullberg BJ, Van’t Wout JW, Hoogstraten C, et al. Recombinant interferon-γ enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis 1993; 168: 436–43

    Article  PubMed  CAS  Google Scholar 

  127. Morrison CJ, Brummer E, Stevens DA. In vivo activation of peripheral blood polymorphonuclear neutrophils by gamma interferon results in enhanced fungal killing. Infect Immun 1989; 57: 2953–8

    PubMed  CAS  Google Scholar 

  128. Perfect JR, Granger DL, Durack DT. Effects of antifungal agents and gamma interferon on macrophage cytotoxicity for fungi and tumor cells. J Infect Dis 1987; 156: 316–23

    Article  PubMed  CAS  Google Scholar 

  129. Street NE, Mosmann TR. Functional diversity of T lymphocytes due to secretion of different cytokine patterns. FASEB J 1991, 5: 171–7

    PubMed  CAS  Google Scholar 

  130. Dunn PL, North RJ. Early gamma-interferon production by natural killer cells is important in defense against murine listeriosis. Infect Immun 1991: 59: 2892–900

    PubMed  CAS  Google Scholar 

  131. Murray HW. Interferon-γ, the activated macrophage, and host defense against microbial challenge. Ann Intern Med 1988; 108: 595–608

    PubMed  CAS  Google Scholar 

  132. Geertsma MF, Nibbering PH, Pos O, et al. Interferon-γ-activated human granulocytes kill ingested Mycobacterium fortuitum more efficiently than normal granulocytes. Eur J Immun 1990; 20: 869–73

    Article  CAS  Google Scholar 

  133. Badaró R, Falcoff E, Badaro FS, et al. Treatment of visceral leishmaniasis with pentavalent antimony and interferon gamma. N Engl J Med 1990; 322: 16–21

    Article  PubMed  Google Scholar 

  134. Gallin JI, Malech HL, Melnick DA, et al. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 1991; 324: 509–16

    Article  Google Scholar 

  135. Ezekowitz RAB, Sieff CA, Dinauer MC, et al. Restoration of phagocyte function by interferon-γ in X-linked chronic granulomatous disease occurs at the level of a progenitor cell. Blood 1990; 76: 2443–8

    PubMed  CAS  Google Scholar 

  136. Belosevic M, Finbloom DS, Meltzer MS, et al. Il-2. A cofactor for induction of activated macrophage resistance to infection. J Immunol 1990: 145: 831–9

    PubMed  CAS  Google Scholar 

  137. Sharma SD, Hofflin JM, Remington JS. In vivo recombinant interleukin 2 administration enhances survival against a lethal challenge with Toxoplasma gondii. J Immunol 1985; 135: 4160–3

    PubMed  CAS  Google Scholar 

  138. Weyand C, Goronzy J, Fathman CG, et al. Administration in vivo of recombinant interleukin-2 protects mice against septic death. J Clin Invest 1987; 79: 1756–63

    Article  PubMed  CAS  Google Scholar 

  139. Chong KT. Prophylactic administration of interleukin-2 protects mice from lethal challenge with Gram-negative bacteria. Infect Immun 1987; 55: 668–73

    PubMed  CAS  Google Scholar 

  140. Kaplan G, Bitton WJ, Hancock GE. The systemic influence of recombinant interleukin-2 on the manifestations of lepromatous leprosy. J. Exp Med 1991; 173: 993–1006

    Article  PubMed  CAS  Google Scholar 

  141. Murphy PM, Lane HC, Gallin JI, et al. Marked disparity in incidence of bacterial infections in patients with the acquired immunodeficiency syndrome receiving interleukin-2 or interferon-γ. Ann Intern Med 1988; 108: 36–41

    PubMed  CAS  Google Scholar 

  142. Syndman DR, Sullivan B, Gill M, et al. Nosocomial sepsis associated with interleukin-2. Ann Intern Med 1990; 112: 102–7

    Google Scholar 

  143. Klempner MS, Noring R, Mier JW, et al. An acquired chemotatic defect in neutrophils from patients receiving interleukin-2 immunotherapy. N Engl J Med 1990: 332: 959–66

    Article  Google Scholar 

  144. Wei S, Serbousek D, McMillen S, et al. Suppression of human monocyte function against Candida albicans by autologous IL-2 induced lymphokine-activated killer cells. J Immunol 1991: 146: 337–42

    PubMed  CAS  Google Scholar 

  145. Ausiello C, Maleci A, Spagnoli GC, et al. Cell-mediated cytotoxicity in glioma-bearing patients; differential responses of peripheral blood mononuclear cells to stimulation with interleukin-2 and microbial antigen. J Neuro-Oncol 1988; 6: 29–33

    Article  Google Scholar 

  146. Neta R, Vogel SN, Sipe JD, et al. Comparison of in vivo effects of human recombinant IL 1 and human recombinant IL 6 in mice. Lymphokine Res 1988; 7: 403–12

    PubMed  CAS  Google Scholar 

  147. Czuprynski CJ, Haak-Frendscho M, Maroushek N, et al. Effects of recombinant human interleukin-6 alone and in combination with recombinant interleukin-1α and tumor necrosis factor-alpha on antibacterial resistance in mice. Antimicrob Agents Chemother 1992; 36: 68–70

    Article  PubMed  CAS  Google Scholar 

  148. Liu Z, Simpson RJ, Cheers C. Recombinant interleukin-6 protects mice against experimental bacterial infection. Infect Immun 1992; 60: 4402–6

    PubMed  CAS  Google Scholar 

  149. Peveri P, Walz A, Dewald B, et al. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J Exp Med 1988; 167: 1547–59

    Article  PubMed  CAS  Google Scholar 

  150. Djeu JY, Matsushima K, Oppenheim JJ, et al. Functional activation of human neutrophils by recombinant monocyte-derived neutrophil chemotactic factor/IL-8. J Immunol 1990: 144: 2205–10

    PubMed  CAS  Google Scholar 

  151. Lohmann-Matthes ML. Interaction of macrophages and cytokines. Curr Opinion Immunol 1989; 2: 33–8

    Article  CAS  Google Scholar 

  152. Scott P. IL-12: initiation cytokine for cell-mediated immunity. Science 1993; 260: 496–7

    Article  PubMed  CAS  Google Scholar 

  153. Hsieh CS, Macatonia SE, Tripp CS, et al. Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–9

    Article  PubMed  CAS  Google Scholar 

  154. Sypek JP, Chung CL, Mayor SEH, et al. Resolution of cutaneous leishmaniasis: interleukin-12 initiates a protective T helper type 1 immune response. J Exp Med 1993; 177: 1797–802

    Article  PubMed  CAS  Google Scholar 

  155. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science 1985; 229: 16–22

    Article  PubMed  CAS  Google Scholar 

  156. Fibbe WE, Van Damme J, Billiau A, et al. Interleukin-1 (22-k factor) induces release of granulocyte-macrophage colony-stimulating activity from human mononuclear phagocytes. Blood 1986; 68: 1316–21

    PubMed  CAS  Google Scholar 

  157. Fleischmann J, Golde DW, Weisbart RH, et al. Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils. Blood 1986; 68: 708–11

    PubMed  CAS  Google Scholar 

  158. Blanchard DK, Michelini-Norris B, Djeu JY. Production of granulocyte-macrophage colony-stimulating factor by large granular lymphocytes stimulated with Candida albicans: role in activation of human neutrophil function. Blood 1991: 77: 2259–65

    PubMed  CAS  Google Scholar 

  159. Wang M, Friedman H, Djeu JY. Enhancement of human monocyte function against Candida albicans by the colon)-stimulating factors (CSF): IL-3, granulocyte-macrophage CSF. and macrophage CSF. J Immunol 1989; 143: 671–7

    PubMed  CAS  Google Scholar 

  160. Reed SG, Nathan CF, Pihl DL, et al. Recombinant granulocyte/macrophage colony-stimulating factor activates macrophages to inhibit Trypanosoma cruzi and release hydrogen peroxide. Comparison with interferon-γ. J Exp Med 1987; 166: 1734–46

    Article  PubMed  CAS  Google Scholar 

  161. Handman E, Burgess AW. Stimulation by granulucyte-macrophage colony-stimulating factor of Leishmania tropica killing by macrophages. J Immunol 1979; 122: 1134–7

    PubMed  CAS  Google Scholar 

  162. Denis M. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukocyte Biol 1991; 49: 380–7

    PubMed  CAS  Google Scholar 

  163. Kayashima S, Tsuru S, Shinomya N, et al. Effects of macrophage colony-stimulating factor on reduction of viable bacteria and survival of mice during Listeria monocytogenes infection: characteristics of monocyte subpopulations. Infect Immun 1991; 59: 4677–80

    PubMed  CAS  Google Scholar 

  164. Gregory SH, Wing EJ, Tweardy DJ, et al. Primary listerial infections are exacerbated in mice administered neutralizing antibody to macrophage colony-stimulating factor. J Immunol 1992; 149: 188–93

    PubMed  CAS  Google Scholar 

  165. Cenci E, Bartocci A, Puccetti P, et al. Macrophage colony-stimulating factor in murine candidiasis — serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun 1991; 59: 868–72

    PubMed  CAS  Google Scholar 

  166. Hume DA, Denkins Y. The deleterious effect of macrophage colony-stimulating factor (CSF-1) on the pathology of experimental candidiasis in mice. Lymphokine Cytokine Res 1992; 11: 95–8

    PubMed  CAS  Google Scholar 

  167. Nemunaitis J, Meyers JD, Buckner CD, et al. Phase-I trial of recombinant human macrophage colony-stimulating factor in patients with invasive fungal infections. Blood 1991; 78: 907–13

    PubMed  CAS  Google Scholar 

  168. Schuster MW. Granulocyte-macrophage colony-stimulating factor (GM-CSF): what role in bone marrow transplantation? Infection 1992; 2: 95–9

    Article  Google Scholar 

  169. Gerhartz HH, Stern AC, Wolf Hornung B, et al. Intervention treatment of established neutropenia with human recombinant granulocyte-macrophage colony-stimulating factor (rh GM-CSF) in patients undergoing cancer chemotherapy. Leuk Res 1993; 17: 175–85

    Article  PubMed  CAS  Google Scholar 

  170. Smith J, Urba W, Steis R, et al. Interleukin-1 alpha (IL-1α): results of a phase I toxicity and immunomodulatory trial. Proc Am Soc Clin Oncol Annu Meet 1990; 9: 717

    Google Scholar 

  171. Smith JW, Longo DL, Alvord WG, et al. The effects of treatment with interleukin-1α on platelet recovery after high-dose carboplatin. N Engl J Med 1993; 328: 756–61

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kullberg, BJ., Vogels, M.T.E. & van der Meer, J.W.M. Immunomodulators in Bacterial and Fungal Infections. Clin. Immunother. 1, 43–55 (1994). https://doi.org/10.1007/BF03258490

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258490

Keywords

Navigation