Skip to main content
Log in

Pharmacology of Aniracetam

A Novel Pyrrolidinone Derivative with Cognition Enhancing Activity

  • Published:
Drug Investigation Aims and scope Submit manuscript

Summary

A comprehensive review of the extensive preclinical pharmacological data available on the pyrrolidinone derivative aniracetam has provided convincing evidence of ameliorative effects on learning and memory. Such effects were most clearly observed in animals exhibiting impaired cognitive abilities. Aniracetam was consistently shown to be considerably more potent than the structurally similar, prototypic nootropic piracetam, which was often included in these experiments as a parallel, active control compound. The mechanism of action of the nootropics, including aniracetam, has remained elusive, although it has been speculated that indirect facilitation of cholinergic neurotransmission, especially under conditions of dysfunction, may contribute. Recent studies indicate that aniracetam acts at the AMPA subtype of glutamate receptors as a positive modulator. Metabolites of aniracetam have been found to exhibit positive effects on memory and probably contribute to the cognition enhancement observed after aniracetam treatment. Finally, aniracetam was shown to be well tolerated under the diverse test conditions and in the numerous species evaluated. Thus, the cognition enhancer aniracetam exhibits a pharmacological profile suggesting considerable potential therapeutic value in the treatment of dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberici GP, Steinfels GF. Comparative effects of putative cognitive enhancing compounds. Abstract. Society for Neuroscience Abstracts 14: 249, 1988

    Google Scholar 

  • Bandle EF, Wendt G, Ranalder UB, Trautmann K-H. 2-Pyrrolidinone and succinimide endogenously present in several mammalian species. Life Sciences 35: 2205–2212, 1984

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417, 1982

    PubMed  CAS  Google Scholar 

  • Bassant MH, Jobert A, Dutar P, Lamour Y. Effect of psychotropic drugs on identified septohippocampal neurons. Neuroscience 27: 911–920, 1988

    PubMed  CAS  Google Scholar 

  • Bering B, Mueller WE. Interaction of piracetam with several neurotransmitter receptors in the central nervous system. Arzneimittel Forschung 35: 1350–1352, 1985

    PubMed  CAS  Google Scholar 

  • Bowen DM, Francis PT. Neurochemistry, neuropharmacology and aetiological factors in Alzheimer’s disease. Seminars in Neuroscience 2: 101–108, 1990

    Google Scholar 

  • Brugger F, Evans RH, Wicki U, Olpe HR, Pozza MF. The modulation of the quisqualate receptor by the nootropic drug aniracetam in the hemisected rat spinal cord preparation. European Journal of Neuroscience (Suppl. 4): 122, 1991

    Google Scholar 

  • Cicardo VH, Carbone SE, Rondina DC, Mastronardi IO, Izquierdo JA. Effects of aniracetam on GABAergic-monoaminergic systems in rat brain and on motility: interactions with antagonists of dopamine receptors. International Research Communications System Medical Science 14: 1081–1082, 1986

    CAS  Google Scholar 

  • Copani A, Genazzani AA, Aleppo G, Casabona G, Canonica P, et al. Nootropic drugs positively modulate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-sensitive glutamate receptors in neuronal cultures. Journal of Neurochemistry 58: 1199–1204, 1992

    PubMed  CAS  Google Scholar 

  • Cumin R, Bandle EF, Gamzu E, Haefely WE. Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents. Psychopharmacology 78: 104–111, 1982

    PubMed  CAS  Google Scholar 

  • DeNoble VJ. Vinpocetine enhances retrieval of a step-through passive avoidance response in rats. Pharmacology, Biochemistry and Behavior 26: 183–186, 1987

    CAS  Google Scholar 

  • DeNoble VJ, Repetti SJ, Gelpke LW, Wood LM, Keim KL. Vinpocetine: nootropic effects on scopolamine-induced and hypoxia-induced retrieval deficits of a step-through passive avoidance response in rats. Pharmacology, Biochemistry and Behavior 24: 1123–1128, 1986

    CAS  Google Scholar 

  • Downs DA, Harrigan SE. Self-administration of Cl-844, hydergine and psychomotor stimulants by Rhesus monkeys. Abstract. International Journal of Neuroscience 32: 281, 1987

    Google Scholar 

  • Flood JF, Cherkin A. Scopolamine effects on memory retention in mice: a model of dementia? Behavioral and Neural Biology 45: 169–184, 1986

    PubMed  CAS  Google Scholar 

  • Franceschi M, Alberoni M, Bressi S, Preda L, Cattaneo C, et al. Clinical models of phase I for the study of nootropic drugs. Pharmacological Research 22 (Suppl.): 214, 1990

    Google Scholar 

  • Frankin SR, Sethy VH, Tang AH. Amnesia produced by intra-cerebroventricular injections of hemicholinium-3 in mice was prevented by pretreatment with piracetam-like compounds. Pharmacology, Biochemistry and Behavior 25: 925–927, 1986

    Google Scholar 

  • Funk KF, Schmidt J. Zur cholinergen Wirkung von Nootropika. Biomedica Biochimica Acta 47: 417–421, 1988

    PubMed  CAS  Google Scholar 

  • Galliani G, Formento ML, Nencioni A, Barzaghi F. Animal models for screening nootropics. In Assandri A, Fumero S (Eds) Trends in drug development. Ivrea (Italy) Istituto di Ricierche Biomediche ‘A. Marxer’, pp. 43–74, 1989

  • Gamzu E, Boff E, Zolcinski M, Vincent G, Verderese T. A rapidly acquired, appetitively motivated, serial spatial discrimination reversal in rats for evaluating manipulations of learning and memory. Abstract. Society for Neuroscience Abstracts 9: 824, 1983

    Google Scholar 

  • Gamzu E, Vincent G, Verderese A, Boff E, Lee L, et al. Pharmacological protection against memory retrieval deficits as a method of discovering new therapeutic agents. In Fisher A et al. (Eds) Alzheimer’s and Parkinson’s disease: strategies in research and development, pp. 375–391, Adv. Behav. Biol. Vol. 29, Plenum Press, New York, 1986

    Google Scholar 

  • Genazzani AA, Copani A, Aleppo G, Canonico PL, Nicoletti F. Nootropic drugs as positive modulators of AMPA receptors. Abstract. Society for Neuroscience Abstracts 17: 796, 1991

    Google Scholar 

  • Genkova MG, Lazarova MB. Influence of nootropic drugs on the learning- and memory-impairing effect of diethyldithiocarbamate in albino rats. Methods and Findings in Experimental and Clinical Pharmacology 10: 369–375, 1988

    PubMed  CAS  Google Scholar 

  • Genkova-Papasova M, Lazarova-Bakurova M. Influence of nootropic drugs on memory-impairing effect of diethyldithiocarbamate and clonidine in ‘step down’ passive avoidance in albino rats. Acta Physiologica Pharmacologica Bulgarica 14: 36–42, 1988

    CAS  Google Scholar 

  • Giacobini E. Cholinergic receptors in human brain: effects of aging and Alzheimer’s disease. Journal of Neuroscience Research 27: 548–560, 1990

    PubMed  CAS  Google Scholar 

  • Gibson GE, Peterson C. Pharmacologic models of age-related deficits. In Crook T et al. (Eds) Assessment of geriatric psychopharmacology, pp. 323–343, Mark Powley Associates, New Canaan, Connecticut, 1983

    Google Scholar 

  • Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke 20: 1627–1642, 1989

    PubMed  CAS  Google Scholar 

  • Giurgea C. The predictive value of animal experimentation for clinical geropsychopharmacology. Gerontology 32 (Suppl. 1): 37–45, 1986

    PubMed  Google Scholar 

  • Giurgea CE, Moyersoons FE. On the pharmacology of cortical evoked potentials. Archives Internationales de Pharmacodynamie et de Thérapie 199: 67–78, 1972

    PubMed  CAS  Google Scholar 

  • Gottfries CG. Pharmacological treatment strategies in dementia disorders. Pharmacopsychiatry 22: 129–134, 1989

    PubMed  Google Scholar 

  • Gottfries CG. Neurochemical aspects on aging and diseases with cognitive impairment. Journal of Neuroscience Research 27: 541–547, 1990

    PubMed  CAS  Google Scholar 

  • Haegele KD, Schwartz JJ, Schoun J, Schmitt AH, Schechter PJ. 2-Pyrrolidinone in human cerebrospinal fluid: a major constituent of total gamma-aminobutyric acid. Journal of Neurochemistry 49: 1402–1406, 1987

    PubMed  CAS  Google Scholar 

  • Hall ED, Von Voigtlander PF. Facilitatory effects of piracetam on excitability of motor nerve terminals and neuromuscular transmission. Neuropharmacology 26: 1573–1579, 1987

    PubMed  CAS  Google Scholar 

  • Himori N, Watanabe H, Matsuura A, Umeda Y, Kuwahara T, et al. General pharmacological properties of aniracetam, a cerebral insufficiency improver. Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 93–128, 1986

    Google Scholar 

  • Ikeda Y, Tanabe S, Takatoh M. Effect of dibenzoxazepine analogue (BY-1949) on acquisition process of operant behaviour in aged rats. Abstract. Psychopharmacology 96 (Suppl.): 305, 1988

    Google Scholar 

  • Isaacson JS, Nicoll RA. Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America 88: 10936–10940, 1991

    PubMed  CAS  Google Scholar 

  • Ito I, Tanabe S, Kohda A, Sugiyama H. Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. Journal of Physiology 424: 533–543, 1990

    PubMed  CAS  Google Scholar 

  • Itoh J, Nabeshima T, Kameyama T. Utility of an elevated plusmaze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology 101: 27–33, 1990

    PubMed  CAS  Google Scholar 

  • Jaenicke B, Schulze G, Coper H. Motor performance achievements in rats of different ages. Experimental Gerontology 18: 393–407, 1983

    Google Scholar 

  • Jaenicke B, Wrobel D, Schulze G. The effects of various drugs on the motor performance capacity of old rats. Pharmacopsychiatry 18: 136–137, 1985

    CAS  Google Scholar 

  • Kaneko S, Sugimura M, Takahashi H, Inoue T, Satoh M. Selective inhibition of NMDA receptor function by nootropic drugs: elevation of the sites of action using mRNA-injected Xenopus oocyte responses and [3H]MK-801 binding assay. Abstract. Japanese Journal of Pharmacology 55 (Suppl.): 53P, 1991

    Google Scholar 

  • King GA. Protection against hypoxia-induced lethality in mice. A comparison of the effects of hypothermia and drugs. Archvies Internationales de Pharmacodynamie et de Thérapie 286: 282–298, 1987

    CAS  Google Scholar 

  • Kubota A, Furuya I, Kurasawa M. Pharmacological study of aniracetam II: choice reaction time-shortening action of aniracetam in aged rats; active metabolites, repeated treatment and sex difference. Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 721–727, 1986a

    Google Scholar 

  • Kubota A, Furuya I, Kurasawa M. Pharmacological study of aniracetam III: choice reaction time-shortening action of aniracetam in rat post-cerebrovascular disease deficiency model (SHR-SP). Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 729–732, 1986b

    Google Scholar 

  • Kubota A, Hayashi T, Sakagami T, Watanabe A, Nakamura K. Scopolamine model of retrograde amnesia: its prevention and relevant cerebral nuclei involved. In Saito S, Yanagita T (Eds) Learning and memory: drugs as reinforcers. pp. 96–118, Excerpta Medica, Amsterdam, 1982

    Google Scholar 

  • Kubota A, Kurasawa M, Furuya I. Pharmacological study of aniracetam I: Choice reaction time-shortening action of aniracetam in aged rats; effective doses and reference drugs. Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 713–720, 1986c

    Google Scholar 

  • Kuwahara A, Kubota A, Hakkei M, Nakamura K. Drug dependence test on a cerebral insufficiency improver, aniracetam. Folia Pharmacologica Japonica 89: 33–46, 1987

    PubMed  CAS  Google Scholar 

  • Laurent J-P, Humbel U. Aniracetam-induced enhancement of synaptic transmission in rat hippocampal slices: extracellular analysis. Abstract. Neuroscience 22 (Suppl.): S349, 1987

    Google Scholar 

  • Laurent J-P, Humbel U, Pozza M. Differential electrophysiological effects of aniracetam and piracetam in rat hippocampal slices. Presentation at IUPHAR 9th International Congress of Pharmacology, London, July 29–August 3, 1984

  • Lazarova-Bakarova M, Genkova-Papasova M. Effects of nootropic drugs on diethyldithiocarbamate- or clonidine-impaired learning and memory in rats. Abstract. Psychopharmacology 96 (Suppl.): S35, 1988

    Google Scholar 

  • Lazarova-Bakarova MB, Genkova-Papasova MG. Influence of nootropic drugs on the memory-impairing effect of clonidine in albino rats. Methods and Findings in Experimental and Clinical Pharmacology 11: 235–239, 1989

    PubMed  CAS  Google Scholar 

  • Lorez H-P, Martin JR, Keller HH, Cumin R. Effect of aniracetam and the benzodiazepine receptor partial inverse agonist Ro 15-3505 on cerebral glucose utilization and cognitive function after lesioning of cholinergic forebrain nuclei in the rat. Drug Development Research 14: 359–362, 1988

    Google Scholar 

  • Lundholm B, Sparf B. The effect of atropine on the turnover of acetycholine in the mouse brain. European Journal of Pharmacology 32: 287–292, 1975

    PubMed  CAS  Google Scholar 

  • Martin JR, Cumin R, Aschwanden W, Moreau J-L, Jenck F, et al. Aniracetam improves maze performance in rats. Neuro-Report 3: 81–83, 1992

    Google Scholar 

  • Matsuyama K, Miyazaki C, Masataka I. Development of a pyrrolidinone derivative (cyclic GABA) for modulating brain glutamate tranmission. Advances in Behavioral Biology 36: 185–196, 1989

    CAS  Google Scholar 

  • Miyazaki C, Matsuyama K, Ichikawa M, Goto S, Yamamoto J. Synthesis of valproyl-2-pyrrolidinone and its evaluation as a cognitive drug with the ability to modulate acidic amino acids in the brain. Journal of Pharmacobio-Dynamics 13: 70–75, 1990

    PubMed  CAS  Google Scholar 

  • Mizuki Y, Yamada M, Katoh I, Takada Y, Tsujimaru S, et al. Effects of aniracetam, a nootropic drug, in senile dementia. Kurume Medical Journal 31: 135–143, 1984

    PubMed  CAS  Google Scholar 

  • Mondadori C, Bhatnagar A, Borkowski J, Haeusler A. Involvement of a steroidal component in the mechanism of action of piracetam-like nootropics. Brain Research 506: 101–108, 1990

    PubMed  CAS  Google Scholar 

  • Mondadori C, Ducret T, Borkowski J. The memory enhancing effects of the piracetam-like nootropics are dependent on experimental parameters. Behavioural Brain Research 33: 79–82, 1989a

    PubMed  CAS  Google Scholar 

  • Mondadori C, Ducret T, Borkowski J. How long does ‘memory consolidation’ take? New compounds can improve retention performance, even if administered up to 24 hours after the learning experience. Brain Research 555: 107–111, 1991

    PubMed  CAS  Google Scholar 

  • Mondadori C, Ducret T, Petschke F. Blockade of the nootropic action of piracetam-like nootropics by adrenalectomy: an effect of dosage? Behavioural Brain Research 34: 155–158, 1989b

    PubMed  CAS  Google Scholar 

  • Mondadori C, Petschke F. Do piracetam-like compounds act centrally via peripheral mechanism? Brain Research 435: 310–314, 1987

    PubMed  CAS  Google Scholar 

  • Moreau J-L, Jenck F, Bonetti EP, Martin JR, Haefely WE. Novel long-acting benzodiazepine receptor ligands Ro 41-7812 and Ro 42-8773: neurological and behavioral profile. Drug Development Research 22: 375–383, 1991

    CAS  Google Scholar 

  • Nabeshima T, Noda Y, Tohyama K, Itoh J, Kameyama T. Effects of DM-9384 in a model of amnesia based on animals with GABAergic neuronal dysfunctions. European Journal of Pharmacology 178: 143–149, 1990a

    PubMed  CAS  Google Scholar 

  • Nabeshima T, Ogawa S, Kameyama T, Shiotani T, Takasu Y, et al. Effects of DM-9384 and aniracetam on learning in normal and basal forebrain-lesioned rats. Research Communications in Psychology, Psychiatry and Behavior 16: 1–14, 1991a

    CAS  Google Scholar 

  • Nabeshima T, Tohyama K, Kameyama T. Effects DM-9384, a pyrrolidinone derivative, on alcohol- and chloridiazepoxide-induced amnesia in mice. Pharmacology, Biochemistry and Behavior 36: 233–236, 1990b

    CAS  Google Scholar 

  • Nabeshima T, Tohyama K, Murase K, Ishihara S, Kameyama T, et al. Effects of DM-9384, a cyclic derivative of GABA, on amnesia and decreases in GABAa and muscarinic receptors induced by cycloheximide. Journal of Pharmacology and Experimental Therapeutics 257: 271–275, 1991b

    PubMed  CAS  Google Scholar 

  • Nakajima T, Kubota A, Nakamura K. Anti-amnestic agent and post-proline cleaving enzyme inhibition. Abstract. Folia Phar-macologica Japonica 82: 154P–155P, 1983

    Google Scholar 

  • Nakajima T, Takahashi M, Okada T. Pharmacological study of aniracetam VI: effects of aniracetam on muscarinic acetylcholine receptors in the rat hippocampus. Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 751–757, 1986

    Google Scholar 

  • Nakayama S, Ichihara S, Ichihara Y, Sakata H, Tomisawa H, et al. Pharmacokinetic study on aniracetam in rats I: Blood level profile, tissue distribution, and excretion after a single oral administration. Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 129–145, 1986

    CAS  Google Scholar 

  • Ohno M, Yamamoto T, Kitajima I, Ueki S. WEB 1881 FU ameliorates impairment of working memory induced by scopolamine and cerebral ischemia in the 3-panel runway task. Abstract. Japanese Journal of Pharmacology 49 (Suppl.): 267P, 1989

    Google Scholar 

  • Okada T, Satoh T, Yajima T. Pharmacological study of aniracetam IV: a protective effect of aniracetam on decrease in deoxyglucose uptake in the rat brain under anemic hypoxia. Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 733–740, 1986

    Google Scholar 

  • Okuyama S, Aihara H. Action of nootropic drugs on transcallosal responses in rats. Neuropharmacology 27: 67–72, 1988

    PubMed  CAS  Google Scholar 

  • Ozawa S, Lino M, Abe M. Excitatory synapse in the rat hippocampus in tissue culture and effects of aniracetam. Neuroscience Research 12: 72–82, 1991

    PubMed  CAS  Google Scholar 

  • Parnetti L, Bartorelli L, Bonaiuto S, Cucinotta D, Cuzzupoli M, et al. Aniracetam (Ro 13-5057) for the treatment of senile dementia of Alzheimer type: results of a multicentre clinical study. Dementia 2: 262–267, 1991

    Google Scholar 

  • Pepeu G, Marconcini Pepeu I, Casamenti F. The validity of animal models in the search of drugs for the aging brain. Drug Design and Delivery 7: 1–10, 1990

    PubMed  CAS  Google Scholar 

  • Perio A, Terranova JP, Worms P, Bluthe RM, Dantzer R, et al. Specific modulation of social memory in rats by cholinomimetic and nootropic drugs, by benzodiazepine inverse agonists, but not by psychostimulants. Psychopharmacology 97: 262–268, 1989

    PubMed  CAS  Google Scholar 

  • Petkov VD, Getova D, Mosharrof AH. A study of nootropic drugs for anti-anxiety action. Acta Physiologica et Pharmacologica Bulgaria 13: 25–30, 1987

    CAS  Google Scholar 

  • Petkov VD, Grahovska T, Petkov VV, Konstantinova E, Stancheva S. Changes in the brain biogenic monoamines of rats induced by piracetam and aniracetam. Acta Physiologica et Pharmacologica Bulgarica 10: 6–14, 1984

    PubMed  CAS  Google Scholar 

  • Petkov VD, Kehayov R. Individually-determined differences in the effects of psychotropic drugs on memory (experiments on rats). Acta Physiologica et Pharmacologica Bulgarica 13: 30–36, 1987

    PubMed  CAS  Google Scholar 

  • Petkov VD, Mosharrof AH, Milenkov B, Enev V. Learning and memory effects of four newly-synthesized aniracetam analogues. Acta Physiologica et Pharmacologica Bulgarica 15: 18–26, 1989

    PubMed  CAS  Google Scholar 

  • Petkov VD, Mosharrof AH, Petkov VV, Kehayov RA. Age-related differences in memory and in the memory effects of nootropic drugs. Acta Physiologica et Pharmacologica Bulgarica 16: 28–36, 1990

    PubMed  CAS  Google Scholar 

  • Pieri L, Schaffner R, Scherschlicht R, Polc P, Sepinwall J, et al. Pharmacology of midazolam. Arzneimittel-Forschung 31: 2180–2201, 1981

    PubMed  CAS  Google Scholar 

  • Pietrusiak N, Vincent GP, Harney R, Sepinwall J. Use of proximal vs. distal cues in a water maze task is strain dependent: Aniracetam (Ro 13-5057) reverses distal cue deficits. Abstract. Society for Neuroscience Abstracts 12: 705, 1986

    Google Scholar 

  • Pizzi M, Fallacara C, Memo M, Spano PF. Aniracetam prevents glutamate-induced neurotoxicity. Abstract. Society for Neuroscience Abstracts 17: 792, 1991

    Google Scholar 

  • Pontecorvo MJ, Evans HL. Effects of aniracetam on delayed matching-to-sample performance on monkeys and pigeons. Pharmacology, Biochemistry and Behavior 22: 745–752, 1985

    CAS  Google Scholar 

  • Poschel BPH, Ho PM, Ninteman FW, Callahan MJ. Pharmacologic therapeutic window of pramiracetam demonstrated in behavior, EEG, and single neuron firing rates. Experientia 41: 1153–1156, 1985

    PubMed  CAS  Google Scholar 

  • Poschel BPH, Marriott JG, Gluckman MI. Pharmacology of the cognition activator pramiracetam (CI-879). Drugs Under Experimental and Clinical Research 9: 853–871, 1983

    CAS  Google Scholar 

  • Pozzi O, Allievi E, Biagetti R, Banfi S, Dorigotti L. Behavioural screening for potential nootropic drugs. Abstract. Pharmacological Research Communications 20 (Suppl. 2): 315, 1988

    Google Scholar 

  • Rigter H, Martinez JL, Crabbe JC. Forgetting and other behavioral manifestations of aging. In Stein DG (Ed.) The psychobiology of aging, pp. 161–175, Elsevier/North Holland, Amsterdam, 1980

    Google Scholar 

  • Roca J, Balasch J. Effect of nicardipine on vertebral blood flow in dogs. Drugs Under Experimental and Clinical Research 10: 399–403, 1984

    CAS  Google Scholar 

  • Rousseva S, Petkov VV, Petkov VD, Voronina TA, Nerobkova LN, et al. Memory effects of the combination of medazepam with nootropic agents. Acta Physiologica et Pharmacologica Bulgarica 14: 27–35, 1988

    PubMed  CAS  Google Scholar 

  • Rumennik L, Vincent GP, Schwam E, Sepinwall J. A comparison of drug-induced effects on acquisition and retention in the squirrel monkey. Abstract. Society for Neuroscience Abstracts 14: 60, 1988

    Google Scholar 

  • Sakurai T, Hatanaka S, Tanaka S, Yamasaki T, Kojima H, et al. Protective effect of DM-9384, a novel pyrrolidinone derivative, against experimental cerebral anoxia. Japanese Journal of Pharmacology 54: 33–43, 1990

    PubMed  CAS  Google Scholar 

  • Sakurai T, Ojima H, Yamasaki T, Kojima H, Akashi A. Effects of N-(2,6-dimethylphenyl)-2-(2-oxo-1-pyrrolidinyl) acetamide (DM-9384) on learning and memory in rats. Japanese Journal of Pharmacology 50: 47–53, 1989

    PubMed  CAS  Google Scholar 

  • Saletu B, Gruenberger J. The hypoxia model in human psychopharmacology: neurophysiological and psychometric studies with aniracetam i.v. Human Neurobiology 3: 171–181, 1984

    PubMed  CAS  Google Scholar 

  • Saletu B, Gruenberger J, Linzmayer L. Quantitative EEG and psychometric analyses in assessing CNS-activity of Ro 13-5057 — a cerebral insufficiency improver. Methods and Findings in Experimental and Clinical Pharmacology 2: 269–285, 1980

    PubMed  CAS  Google Scholar 

  • Santucci V, Fournier M, Worms P, Keane P, Bizière K. Cerebralactivating (EEG) properties of two inverse agonists and of an antagonist at the benzodiazepine receptor in the rat. Naunyn-Schmiedeberg’s Archives of Pharmacology 340: 93–100, 1989

    PubMed  CAS  Google Scholar 

  • Satoh M, Ishihara K, Iwama T, Takagi H. Aniracetam augments, and midazolam inhibits, the long-term potentiation in guineapig hippocampal slices. Neuroscience Letters 68: 216–220, 1986

    PubMed  CAS  Google Scholar 

  • Satoh M, Ishihara K, Katsuki H. A pharmacological profile of LTP in CA3 region of guinea-pig hippocampus in vitro. Biomedical Research 10 (Suppl. 2): 125–129, 1989

    CAS  Google Scholar 

  • Schindler U, Rush DK, Fielding S. Nootropic drugs: animal models for studying effects on cognition. Drug Development Research 4: 567–576, 1984

    CAS  Google Scholar 

  • Schwam E, Keim K, Cumin R, Gamzu E, Sepinwall J. The effects of aniracetam on primate behavior and EEG. Annals of the New York Academy of Sciences 444: 482–484, 1985

    PubMed  CAS  Google Scholar 

  • Senin U, Abate G, Fieschi C, Gori G, Guala A, et al. Aniracetam (Ro 13-5057) in the treatment of senile dementia of Alzheimer type (SDAT): results of a placebo controlled multicentre clinical study. European Neuropsychopharmacology 1: 511–517, 1991

    PubMed  CAS  Google Scholar 

  • Sethy VH. Effect of piracetam on high affinity choline uptake. Abstract. Society for Neuroscience Abstracts 9: 429, 1983

    Google Scholar 

  • Shih YH, Pugsley TA. The effects of various cognition-enhancing drugs on in vitro rat hippocampal synaptosomal sodium dependent high affinity choline uptake. Life Sciences 36: 2145–2152, 1985

    PubMed  CAS  Google Scholar 

  • Smith G. Animal models of Alzheimer’s disease: experimental cholinergic denervation. Brain Research Reviews 13: 103–118, 1988

    Google Scholar 

  • Spignoli G, Pepeu G. Interactions between oxiracetam, aniracetam and scopolamine on behavior and brain acetylcholine. Pharmacology, Biochemistry and Behavior 27: 491–495, 1987

    CAS  Google Scholar 

  • Spirt NM, Mangano RM. Modulation of ligand binding to muscarinic cholinergic receptors. Abstract. Society for Neuroscience Abstracts 12: 993, 1986

    Google Scholar 

  • Stancheva SL, Alova LG. Effects of centrophenoxine, piracetam and aniracetam on monoamine oxidase activity in different rat brain structures. (Russian with English abstract). Famakologiia i Toksikologiia 51: 16–18, 1988

    CAS  Google Scholar 

  • Staubli U, Kessler M, Lynch G. Aniracetam has proportionately smaller effects on synapses expressing long-term potentiation: Evidence that receptor changes subserve LTP. Psychobiology 18: 377–381, 1990

    CAS  Google Scholar 

  • Tang C-M, Shi Q-Y, Katchman A, Lynch G. Modulation of the time course of fast EPSCs and glutamate channel kinetics by aniracetam. Science 254: 288–290, 1991

    PubMed  CAS  Google Scholar 

  • Tobe A, Yamaguchi T, Nagai R, Egawa M. Effects of bifemelane hydrochloride (MCI-2016) on experimental amnesia (passive avoidance failure) in rodents. Japanese Journal of Pharmacology 39: 153–161, 1985

    PubMed  CAS  Google Scholar 

  • Todorov S, Zamfirova R, Petkov VD. Study of the effects of nootropic agents on the adrenergic neurotransmission in smooth muscles of young and old animals. Acta Physiologica Pharmacologica Bulgarica 16: 38–45, 1990

    CAS  Google Scholar 

  • Tohyama K, Nabeshima T, Kameyama T. Effect of DM-9384, a pyrrolidinone derivative, on benzodiazepine-induced amnesia. Abstract. Psychopharmacology 96 (Suppl.): 305, 1988

    Google Scholar 

  • Toide K. Effects of aniracetam on one-trial passive avoidance tests and cholinergic neurons in discrete brain regions of rats. Archives Internationales de Pharmacodynamie et de Thérapie 298: 25–37, 1989

    PubMed  CAS  Google Scholar 

  • Tsuzuki K, Takeuchi T, Ozawa S. Agonist- and subunit-dependent potentiation of glutamate receptors by a nootropic drug aniracetam. Molecular Brain Research 16: 105–110, 1992

    PubMed  CAS  Google Scholar 

  • Verderese A, Vincent GP, Fernia P, Sepinwall J. The effects of aniracetam (Ro 13-5057) on memory consolidation and reversal of retrieval deficits in C57BL/6 and C57BL/10 mice. Abstract. Society for Neuroscience Abstracts 12: 705, 1986

    Google Scholar 

  • Vincent G, Verderese A, Gamzu E. The effects of aniracetam (Ro 13-5057) and piracetam on the enhancement of memory in mice. Abstract. Society for Neuroscience Abstracts 10: 258, 1984

    Google Scholar 

  • Vincent G, Verderese A, Gamzu E. The effects of aniracetam (Ro 13-5057) on the enhancement and protection of memory. Annals of the New York Academy of Sciences 444: 489–491, 1985

    PubMed  CAS  Google Scholar 

  • Vincent GP, Sepinwall J. The memory enhancing effects of aniracetam (Ro 13-5057) on spatial memory are strain dependent. Abstract: Society for Neuroscience Abstracts 12: 704, 1986

    Google Scholar 

  • Vyklicky L, Patneau DK, Mayer ML. Modulation of excitatory synaptic transmission by drugs that reduce desensitization at AMPA/kainate receptors. Neuron 7: 971–984, 1991

    PubMed  CAS  Google Scholar 

  • Watabe S, Yamaguchi H, Ashida S. effects of DM-9384, a new cognition-enhancing agent, on cholinergic system in rat cortex. Abstract. Society for Neuroscience Abstracts 16: 137, 1990

    Google Scholar 

  • Watabe S, Yoshii M, Yamaguchi H, Ashida S. DM-9384, a new cognition-enhancing agent, is a potent facilitator of neuronal Ca channel activity as compared with other pyrrolidone derivatives. Abstract. Society for Neuroscience Abstracts 17: 63, 1991

    Google Scholar 

  • Wesnes K, Anand R, Simpson P, Christmas L. The use of a scopolamine model to study the potential nootropic effects of aniracetam and piracetam in healthy volunteers. Journal of Psychopharmacology 4: 219–232, 1990

    PubMed  CAS  Google Scholar 

  • Whitehouse P, Price D, Struble R, Clark A, Coyle J, et al. Alzheimer’s disease and senile dementia: loss of neurons in basal forebrain. Science 215: 1237–1239, 1983

    Google Scholar 

  • Worms P, Bizière K. Antagonism by cholinomimetic drugs of the turning induced by intrastriatal pirenzepine in mice. Psychopharmacology 93: 489–493, 1987

    PubMed  CAS  Google Scholar 

  • Worms P, Kan J-P, Steinberg R, Terranova J-P, Perio A, et al. Cholinomimetic activities of minaprine. Naunyn-Schmiedeberg’s Archives of Pharmacology 340: 411–418, 1989

    PubMed  CAS  Google Scholar 

  • Xiao P, Staubli U, Kessler M, Lynch G. Selective effects of aniracetam across receptor types and forms of synaptic facilitation in hippocampus. Hippocampus 1: 373–380, 1991

    PubMed  CAS  Google Scholar 

  • Yamada K, Inoue T, Tanaka M, Furukawa T. Prolongation of latencies for passive avoidance responses in rats treated with aniracetam or piracetam. Pharmacology, Biochemistry and Behavior 22: 645–648, 1985

    CAS  Google Scholar 

  • Yamamoto J, Toide K, Kasahara N, Matsuura N, Matsushita Y. Effects of various cerebroactive drugs on EEG activity in rabbits and anoxia in mice. Abstract. Japanese Journal of Pharmacology 46 (Suppl.): 167P, 1988

    Google Scholar 

  • Yoshimoto T, Kado K, Matsubara F, Koriyama N, Kaneto H, Tsuru D. Specific inhibitors for prolyl endopeptidase and their anti-amnesic effect. Journal of Pharmacobio-Dynamics 10: 730–735, 1987

    PubMed  CAS  Google Scholar 

  • Yoshizaki H, Okada T. Pharmacological study of aniracetam V: inhibitory effect of aniracetam on scopolamine induced increase of sodium dependent high affinity choline uptake into rat hippocampus. Japanese Pharmacology and Therapeutics 14 (Suppl. 4): 741–750, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, J.R., Haefely, W.E. Pharmacology of Aniracetam. Drug Invest 5 (Suppl 1), 4–49 (1993). https://doi.org/10.1007/BF03258426

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258426

Keywords

Navigation