Skip to main content
Log in

Ability of S-Adenosyl-L-Methionine to Ameliorate Lipoprotein-Induced Membrane Lipid Abnormalities and Cellular Dysfunctions in Human Liver Disease

  • Published:
Drug Investigation Aims and scope Submit manuscript

Summary

Liver disease is associated with characteristic changes in the surface coat of circulating lipoprotein particles. Cholesterol and lecithin molecules accumulate as hepatic secretion of lecithin-cholesterol acyltransferase diminishes, phospholipid fatty acyl chains are deficient in arachidonate, the precursor of eicosanoid production, and the apolipoprotein composition, particularly of high density lipoproteins (HDLs), is abnormal. Increasing evidence suggests that such aberrant circulating lipoproteins are not simply an epiphenomenon: they have pathophysiological consequences through 2 independent mechanisms.

Firstly, while it is well documented that abnormal plasma lipoproteins change the membrane lipid composition in the erythrocytes of jaundiced patients by an exchange-equilibration mechanism, it is now clear from studies in both human and experimental liver disease that other cell types are similarly affected, suggesting a widespread occurrence. Because the correct functioning of membrane proteins, which serve as receptors or are responsible for transport and enzymatic processes, is dependent on the fluidity and/or the composition of their lipid bilayer matrix, it follows as a corollary that lipoprotein-induced extrahepatic membrane dysfunction should be a general feature of severe liver disease; experimental evidence is accumulating to support this concept. Secondly, the abnormal HDL particles from cirrhotic patients are reported to have direct, adverse effects on a variety of cells. The cellular functions disturbed are diverse, but the mechanism appears common inasmuch as they are mediated by apolipoprotein interaction with the cell surface without either lipid transfer or uptake of the intact HDL particle. It seems reasonable to propose, therefore, that several of the metabolic abnormalities accompanying hepatic disease result from, or are exacerbated by, lipoproteins interfering with normal cellular metabolism, either by direct action or indirectly by inducing changes in membrane lipid composition and fluidity.

Importantly, this scenario also suggests that drugs or agents that can improve the lipoprotein milieu of cell membranes or normalise membrane fluidity might be of therapeutic benefit. Preliminary results have demonstrated that treatment of cirrhotic patients with S-adenosyl-L-methionine helps to reverse the accumulation of cholesterol in lipoprotein surfaces and to correct HDL apolipoprotein composition. These changes were accompanied by a reduction in erythrocyte cholesterol content and by an improvement in the fluidity and functioning of erythrocyte membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abebe M, Bulto T, Endesha T, Nigatu W. Further studies on the Trypanosoma brucei group of trypanosomes, isolated from a patient infected in Anger-Didesa Valley, West Ethiopia, using the blood incubation infectivity test (BUT). Acta Tropica 45: 185–186, 1988

    PubMed  CAS  Google Scholar 

  • Agorastos J, Fox C, Harry DS, Mclntyre N. Lecithin: cholesterol acyltransferase and the lipoprotein abnormalities of obstructive jaundice. Clinical Science and Molecular Medicine 54: 369–379, 1978

    PubMed  CAS  Google Scholar 

  • Bank N, Aynedjian HS. A micropuncture study of renal salt and water retention in chronic bile duct obstruction. Journal of Clinical Investigation 55: 994–1002, 1975

    Article  PubMed  CAS  Google Scholar 

  • Bingle C, Ghazi S, Owen JS, Srai SK. LCAT mRNA in liver disease. Lancet 338: 1531, 1991

    Article  PubMed  CAS  Google Scholar 

  • Brasitus TA, Dahiya R, Dudeja PK, Bissonnette BM. Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes. Journal of Biological Chemistry 263: 8592–8597, 1988

    PubMed  CAS  Google Scholar 

  • Brown MD, Dudeja PK, Brasitus TA. S-Adenosyl-L-methionine modulates Na+K+-ATPase in rat colonic basolateral membranes. Biochemical Journal 251: 215–222, 1988

    PubMed  CAS  Google Scholar 

  • Bruckdorfer KR, Graham JM. The exchange of cholesterol and phospholipids between cell membranes and lipoproteins. In Chapman & Wallach (Eds) Biological membranes, Vol. 3, pp. 103–151, Academic Press, New York, 1976

    Google Scholar 

  • Cooper RA. Anemia with spur cells: a red cell defect acquired in serum and modified in the circulation. Journal of Clinical Investigation 48: 1820–1831, 1969

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA. Abnormalities of cell membrane fluidity in the pathogenesis of disease. New England Journal of Medicine 297: 371–377, 1977

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA, Arner EC, Wiley JS, Shattil SJ. Modification of red cell membrane structure by cholesterol-rich lipid dispersions. A model for the primary spur cell defect. Journal of Clinical Investigation 52: 115–126, 1975

    Article  Google Scholar 

  • Cooper RA, Diloy-Puray M, Lando P, Greenberg MS. An analysis of lipoproteins, bile acids, and red cell membranes associated with target cells and spur cells in patients with liver disease. Journal of Clinical Investigation 51: 3182–3192, 1972

    Article  PubMed  CAS  Google Scholar 

  • Day RC, Harry DS, Owen JS, Foo AY, Mclntyre N. Plasma lecithin-cholesterol acyltransferase and the lipoprotein abnormalities of parenchymal liver disease. Clinical Science 56: 575–583, 1979

    PubMed  CAS  Google Scholar 

  • Desai K, Bagget C, Bellamy MF, Mistry P, Burroughs AK, et al. Inhibition of platelet aggregation by abnormal high density lipoprotein particles in plasma from patients with hepatic cirrhosis. Lancet 1: 693–695, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Desai K, Bruckdorfer KR, Hutton RA, Owen JS. Binding of apoErich high density lipoprotein particles by saturable sites on human blood platelets inhibits agonist-induced platelet aggregation. Journal of Lipid Research 30: 831–840, 1989b

    PubMed  CAS  Google Scholar 

  • Diez J, Simon A, Anton F, Indart FJ, Prieto J. Tubular sodium handling in cirrhotic patients with ascites as analysed by the renal lithium clearance method. European Journal of Clinical Investigation 20: 226–271, 1990

    Google Scholar 

  • Epstein M. Renal sodium handling in liver disease. In Epstein (Ed.) The kidney in liver disease, pp. 3–30, Williams & Wilkins, Baltimore, 1988

    Google Scholar 

  • Everson TG, Ahnen D, Harper PC, Krawitt EL. Benign recurrent intrahepatic cholestasis: treatment with S-adenosylmethionine. Gastroenterology 96: 1354–1357, 1989

    PubMed  CAS  Google Scholar 

  • Everson TG, Krawitt EL. Trial of S-adenosylmethionine in patients in two families with cholestatic syndromes. Gastroenterology 100: 1784, 1991

    PubMed  CAS  Google Scholar 

  • Filho MC, Gillett MPT. Changes in microsome lipid composition of rat tissues after bile duct ligation. Biochemical Society Transactions 14: 730–731, 1986

    Google Scholar 

  • Floren C-H, Chen C-H, Franzen J, Albers JJ. Lecithin-cholesterol acyltransferase in liver disease. Scandinavian Journal of Laboratory and Clinical Investigation 47: 613–617, 1987

    CAS  Google Scholar 

  • Frezza M, Centini G, Cammareri G, Le Grazie C, Di Padova C. S-adenosylmethionine for the treatment of intrahepatic cholestasis of pregnancy. Results of a controlled clinical trial. Hepatogastroenterology 37: 122–125, 1990a

    PubMed  Google Scholar 

  • Frezza M, Di Padova C, and the Italian Study Group for SAMe in liver disease. Multicenter placebo-controlled trial of intravenous and oral S-adenosylmethionine in cholestatic patients with liver disease. Hepatology 7: 1105, 1987

    Google Scholar 

  • Frezza M, Surrenti C, Manzillo G, Fiaccadori F, Bortolini M, et al. Oral S-adenosyl-L-methionine in the symptomatic treatment of intrahepatic cholestasis. A double-blind, placebo controlled study. Gastroenterology 99: 211–215, 1990b

    PubMed  CAS  Google Scholar 

  • Friedel HA, Goa KL, Benfield P. S-Adenosyl-L-methionine. A review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism. Drugs 38: 389–416, 1989

    Article  PubMed  CAS  Google Scholar 

  • Gamier M, Hanss M, Paraf A. Erythrocytes filterability reduction and membrane lipids in liver cirrhosis. Clinical Hemorheology 3: 45–52, 1983

    Google Scholar 

  • Gillett MPT, Owen JS. Trypanosoma brucci brucei: differences in the trypanocidal activity of human plasma and its relationship to the level of high density lipoproteins. Transactions of the Royal Society of Tropical Medicine and Hygiene 85: 612–616, 1991

    Article  PubMed  CAS  Google Scholar 

  • Gillett MPT, Owen JS. Characteristics of the binding of human and bovine high-density lipoproteins by bloodstream forms of the African trypanosome, Trypanosoma brucei brucei. Biochimica et Biophysica Acta 1123: 239–248, 1992a

    Article  PubMed  CAS  Google Scholar 

  • Gillett MPT, Owen JS. Comparison of the lytic action on Trypanosoma brucei brucei of plasma, high-density lipoproteins and apolipoprotein A-I from permissive (cattle and sheep) and non-permissive (man and baboon) hosts. Journal of Lipid Research 33: 513–523, 1992b

    PubMed  CAS  Google Scholar 

  • Glickman RM, Sabesin SM. Lipoprotein metabolism. In Arias et al. (Eds) The liver: biology and pathobiology, pp. 331–354, Raven Press, New York, 1988

    Google Scholar 

  • Gotto AM, Pownall HJ, Havel RJ. Introduction to the plasma lipoproteins. Methods in Enzymology 128: 3–41, 1986

    Article  PubMed  CAS  Google Scholar 

  • Grahn EP, Dietz AA, Stefani SS, Donelly WJ. Burr cells, hemolytic anemia and cirrhosis. American Journal of Medicine 45: 78–87, 1968

    Article  PubMed  CAS  Google Scholar 

  • Hanahan DJ, Nelson DR. Phospholipids as dynamic participants in biological processes. Journal of Lipid Research 25: 1528–1535, 1984

    PubMed  CAS  Google Scholar 

  • Hirata F, Axelrod J. Enzymatic methylation of phosphatidyl-ethanolamine increases erythrocyte membrane fluidity. Nature 275: 219–220, 1978

    Article  PubMed  CAS  Google Scholar 

  • Hope MJ, Bruckdorfer KR, Owen JS, Lucy JA. Chemically induced cell fusion in vitro of erythrocytes from patients with liver diseases. Biochemical Society Transactions 5: 1144–1146, 1977

    PubMed  CAS  Google Scholar 

  • Horton RC, Owen JS. LCAT activity as a prognostic liver function test. Lancet 336: 249–250, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Horton RC, Owen JS. ApoE rich high density lipoproteins (HDL) in plasma of cirrhotic patients suppress lymphocyte proliferation. Journal of Hepatology 11 (Suppl. 2): S30, 1990b

    Article  Google Scholar 

  • Imai Y, Scoble J, Owen JS. Increased Na+-dependent D-glucose transport and altered lipid composition in renal cortical brush-border membrane vesicles from bile-duct ligated rats. Journal of Lipid Research 33: 473–483, 1992

    PubMed  CAS  Google Scholar 

  • Jackson PA, Morgan DB. The relation between membrane cholesterol and phospholipid and sodium efflux in erythrocytes from healthy subjects and patients with chronic cholestasis. Clinical Science 62: 104–107, 1982a

    Google Scholar 

  • Jackson PA, Morgan DB. The relation between the membrane cholesterol content and anion exchange in the erythrocytes of patients with cholestasis. Biochimica et Biophysica Acta 693: 99–104, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Jackson RL, Morrisett JD, Gotto AM. Lipoprotein structure and metabolism. Physiological Reviews 56: 259–316, 1976

    PubMed  CAS  Google Scholar 

  • Johnson SB, Gordon E, McClain C, Low G, Holman RT. Abnormal polyunsaturated fatty acid patterns of serum lipids in alcoholism and cirrhosis: arachidonic acid deficiency in cirrhosis. Proceedings of the National Academy of Sciences 82: 1815–1818, 1985

    Article  CAS  Google Scholar 

  • Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC. Cholesterol transport between cells and high-density lipoproteins. Biochimica et Biophysica Acta 1085: 273–298, 1991

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto H, Kawata S, Imai Y, Inada M, Matzusarva Y, Tarui S. Changes in lipid composition of erythrocyte membranes with administration of S-adenosyl-L-methionine in chronic liver disease. Gastroenterologia Japonica 27: 508–513, 1992

    PubMed  CAS  Google Scholar 

  • Kane JP. Speciation of HDL. Advances in Experimental Medicine and Biology 201: 29–35, 1986

    PubMed  CAS  Google Scholar 

  • Kawata S, Chitranukroh A, Owen JS, Mclntyre N. Membrane lipid changes in erythrocytes, liver and kidney in acute and chronic experimental liver disease in rats. Biochimica et Biophysica Acta 896: 26–34, 1987

    Article  PubMed  CAS  Google Scholar 

  • Laffi G, Cominelli F, Ruggiero M, Fedi S, Chianigi VP, et al. Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology 8: 1620–1626, 1988

    Article  PubMed  CAS  Google Scholar 

  • Laffi G, La Villa G, Pinzani M, Ciabattoni G, Patrignani P, et al. Altered renal and platelet arachidonic acid metabolism in cirrhosis. Gastroenterology 90: 274–282, 1986

    PubMed  CAS  Google Scholar 

  • Laffi G, Marra F, Gresele P, Romagnoli P, Palermo A, et al. Evidence for a storage pool defect in platelets from cirrhotic patients with defective aggregation. Gastroenterology, in press, 1992

  • Low MG. Biochemistry of the glycosyl-phospatidylinositol membrane protein anchors. Biochemical Journal 244: 1–13, 1987

    PubMed  CAS  Google Scholar 

  • Mclntyre N, Owen JS. Plasma lipids and lipoproteins in liver disease. In Cohen et al. (Eds) The metabolic basis of acquired disease, pp. 1176–1192, Bailliere Tindall, London, 1990

    Google Scholar 

  • Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 232: 34–47, 1988

    Google Scholar 

  • Marcus AJ. The eicosanoids in biology and medicine. Journal of Lipid Research 25: 1511–1516, 1984

    PubMed  CAS  Google Scholar 

  • Mato JM, Corrales F, Martin-Duce A, Ortiz P, Pajares MA, et al. Mechanisms and consequences of the impaired trans-sul-phuration pathway in liver disease: Part I. Biochemical implications. Drugs 40 (Suppl. 3): 58–64, 1990

    Article  PubMed  Google Scholar 

  • Mead JF. The non-eicosanoid functions of the essential fatty acids. Journal of Lipid Research 25: 1517–1521, 1984

    PubMed  CAS  Google Scholar 

  • Menashe M, Lichtenberg D, Gutierrez-Merino C, Biltonen RL. Relationship between the activity of pancreatic phospholipase A2 and the physical state of the substrate. Journal of Biological Chemistry 256: 4541–4543, 1981

    PubMed  CAS  Google Scholar 

  • Muriel P, Mourelle M. Prevention and reversion of erythrocyte membrane alterations in cirrhotics by S-adenosylmethionine. Journal of Hepatology 10: 742, 1989

    Google Scholar 

  • Neerhout RC. Abnormalities of erythrocyte stromal lipids in hepatic diseases. Journal of Laboratory and Clinical Medicine 71: 438–477, 1968

    PubMed  CAS  Google Scholar 

  • Owen JS, Brown DJC, Harry DS, Mclntyre N, Beaven G, et al. Erythrocyte echinocytosis in liver disease. Role of abnormal plasma high-density lipoproteins. Journal of Clinical Investigation 76: 2275–2286, 1985

    Article  PubMed  CAS  Google Scholar 

  • Owen JS, Bruckdorfer KR, Day RC, Mclntyre N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. Journal of Lipid Research 23: 124–132, 1982

    PubMed  CAS  Google Scholar 

  • Owen JS, Chitranukroh A, Chaves EC. Lecithin: cholesterol acyltransferase in the physiological system. Biochemical Society Transactions 13: 20–24, 1984a

    Google Scholar 

  • Owen JS, Gillett MPT. Plasma lipids, lipoproteins and cell membranes. Biochemical Society Transactions 11: 336–340, 1983

    PubMed  CAS  Google Scholar 

  • Owen JS, Goodall H, Mistry P, Harry DS, Day RC, et al. Abnormal high density lipoproteins from patients with liver disease regulate cholesterol metabolism in cultured skin fibroblasts. Journal of Lipid Research 25: 919–931, 1984c

    PubMed  CAS  Google Scholar 

  • Owen JS, Hutton RA, Day RC, Bruckdorfer KR, Mclntyre N. Platelet lipid composition and platelet aggregation in human liver disease. Journal of Lipid Research 22: 423–430, 1981

    PubMed  CAS  Google Scholar 

  • Owen JS, Hutton RA, Hope MJ, Harry DS, Bruckdorfer KR, et al. Lecithin: cholesterol acyltransferase deficiency and cell membrane lipids and function in human liver disease. Scandinavian Journal of Clinical and Laboratory Investigation 38 (Suppl. 150): 228–232, 1978

    Article  CAS  Google Scholar 

  • Owen JS, Mclntyre N. Erythrocyte lipid composition and sodium transport in human liver disease. Biochimica et Biophysica Acta 510: 168–176, 1978

    Article  PubMed  CAS  Google Scholar 

  • Owen JS, Mclntyre N. Plasma lipoprotein metabolism in lipid transport. Trends in Biochemical Sciences 7: 95–98, 1982

    Article  CAS  Google Scholar 

  • Owen JS, Mclntyre N, Gillett MPT. Lipoproteins, cell membranes and cellular functions. Trends in Biochemical Sciences 9: 238–242, 1984b

    Article  Google Scholar 

  • Panos MZ, Gove C, Firth JD, Raine AEG, Ledingham JGG, et al. Impaired natriuretic response to atrial natriuretic peptide in the isolated kidney of rats with experimental cirrhosis. Clinical Science 79: 67–71, 1990

    PubMed  CAS  Google Scholar 

  • Pepe MG, Curtiss LK. Apolipoprotein E is a biologically active constituent of the normal immunoregulatory lipoprotein, LDL-In. Journal of Immunology 136: 3716–3723, 1986

    CAS  Google Scholar 

  • Phillips MC, Johnson WJ, Rothblat GH. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochimica et Biophysica Acta 906: 223–276, 1987

    Article  PubMed  CAS  Google Scholar 

  • Pisi E, Marchesini G. Mechanisms and consequences of the impaired trans-sulphuration pathway in liver disease: Part II. Clinical consequences and potential for pharmacological intervention in cirrhosis. Drugs 40 (Suppl. 3): 65–72, 1990

    Article  PubMed  Google Scholar 

  • Rafique S, Guardascione M, Osman E, Burroughs AK, Owen JS. Reversal of extrahepatic membrane cholesterol deposition in patients with chronic liver disease by S-adenosylmethionine. Clinical Science 83: 353–356, 1992

    PubMed  CAS  Google Scholar 

  • Rifkin MR. Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proceedings of the National Academy of Sciences 75: 3450–3454, 1978

    Article  CAS  Google Scholar 

  • Rosenthal F. Die trypanociden Stoffe des Menschlichenserums, ihre biologische und klinische Bedeutung. Klinische Wochenschrift 37: 1657–1660, 1924

    Article  Google Scholar 

  • Schachter D. Fluidity and function of hepatocyte plasma membranes. Hepatology 4: 140–151, 1984

    Article  PubMed  CAS  Google Scholar 

  • Schrier RW, Arroyo V, Bernardi M, Epstein M, Henrikson JH, et al. Peripheral arterial vasodilatation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8: 1151–1157, 1988

    Article  PubMed  CAS  Google Scholar 

  • Seidel D. Lipoproteins in liver disease. Journal of Clinical Chemistry and Clinical Biochemistry 25: 541–551, 1987

    CAS  Google Scholar 

  • Shattil SJ, Anaya-Galindo R, Bennet J, Colman RW, Cooper RA. Platelet hypersensitivity induced by cholesterol incorporation. Journal of Clinical Investigation 55: 636–643, 1975

    Article  PubMed  CAS  Google Scholar 

  • Simko V, Kelley RE, Dinscoy HP. Predicting severity of liver disease: twelve laboratory tests evaluated by multiple regression. Journal of International Medical Research 13: 249–254, 1985

    PubMed  CAS  Google Scholar 

  • Simon JB. Red cell lipids in liver disease: relationship to serum lipids and to lecithin-cholesterol acyltransferase. Journal of Laboratory and Clinical Medicine 77: 891–900, 1971

    PubMed  CAS  Google Scholar 

  • Sloop CH, Dory L, Roheim PS. Interstitial fluid lipoproteins. Journal of Lipid Research 28: 225–237, 1987

    PubMed  CAS  Google Scholar 

  • Spector AA, Yorek MA. Membrane lipid composition and cellular function. Journal of Lipid Research 26: 1015–1035, 1985

    PubMed  CAS  Google Scholar 

  • Stramentinoli G. Modulation of membrane fluidity by S-adenosylmethionine treatment in different experimental conditions. In Mato (Ed.) 1st Conference on Biochemical, Pharmacological and Clinical Aspects of Transmethylation, pp. 97–104, Jarypo Editores, Madrid, 1986

    Google Scholar 

  • Stuart MJ, Gerrard JM, White JG. Effect of cholesterol on production of thromboxane B2 by platelets in vitro. New England Journal of Medicine 302: 6–10, 1980

    Article  PubMed  CAS  Google Scholar 

  • Testa I, Rabini RA, Fumelli P, Bertoli E, Mazzanti L. Abnormal membrane fluidity and acetylcholinesterase activity in eryth-rocytes from insulin-dependent diabetic patients. Journal of Clinical Endocrinology and Metabolism 67: 1129–1133, 1988

    Article  PubMed  CAS  Google Scholar 

  • Wensing G, Branch RA. Phenobarbital influences the development of sodium retention in liver disease induced by bile duct ligation in the rat. Hepatology 11: 773–778, 1990

    Article  PubMed  CAS  Google Scholar 

  • Yorke W, Adams ARD, Mugatroyd F. Studies in chemotherapy II. The action in vitro of normal human serum on the pathogenic trypanosomes and its significance. Annals of Tropical Medicine and Parasitology 24: 115–163, 1930

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, J.S., Rafique, S., Osman, E. et al. Ability of S-Adenosyl-L-Methionine to Ameliorate Lipoprotein-Induced Membrane Lipid Abnormalities and Cellular Dysfunctions in Human Liver Disease. Drug Invest 4 (Suppl 4), 22–40 (1992). https://doi.org/10.1007/BF03258361

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258361

Keywords

Navigation