Skip to main content
Log in

Bacterial Resistance to Antimicrobial Agents in Mexico

  • Published:
Drug Investigation Aims and scope Submit manuscript

Summary

Bacterial resistance patterns in nosocomial and community pathogens and antibiotic usage patterns in a tertiary care university hospital were followed between 1979 and 1991. Changes in bacterial resistance patterns were commonly associated with current antibiotic prescription practices. Aminoglycoside resistance was associated with intensive aminoglycoside use, the introduction of the third generation cephalosporin was associated with the appearance of resistance due to newer β-lactamases and the use of the newer quinolones in the treatment of Staphylococcus aureus infections was associated with quinolone resistance. Bacterial resistance patterns differed between a tertiary care university hospital, a secondary care university hospital and the local community. Systematic surveillance of antibacterial resistance coupled with medical education will allow a more rational use of antibiotics and help control increases in bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Letter Nature 148: 837, 1940

    Article  Google Scholar 

  • Brumfitt W, Hamilton-Miller J. Methicillin-resistant Staphylococcus aureus. New England Journal of Medicine 320: 1188–1196, 1989

    Article  PubMed  CAS  Google Scholar 

  • Brunton J, Clare D, Meier MA. Molecular epidemiology of antibiotic resistance plasmids of Haemophilus species and Neisseria gonorrhoeae. Reviews of Infectious Diseases 8: 713–724, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bush K. Recent developments in beta-lactamase research and their implications for the future. Reviews of Infectious Diseases 10: 681–690, 1988

    Article  PubMed  CAS  Google Scholar 

  • Bush K. Characterization of β-lactamases. Antimicrobial Agents and Chemotherapy 33: 259–263, 1989

    Article  PubMed  CAS  Google Scholar 

  • Bush K, Tanaka SK, Bonner DP, Sykes RB. Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 27: 555–560, 1985

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control. Plasmid-mediated antimicrobial resistance in Neisseria gonorrhoeae. United States. 1988 and 1989. Morbidity and Mortality Weekly Report 39: 284–293, 1990

    Google Scholar 

  • Chambers HF. Methicillin-resistant staphylococci. Clinical Microbiology Reviews 1: 173–186, 1988

    PubMed  CAS  Google Scholar 

  • Daum TE, Schaberg DR, Terpenning MS, Sottile WS, Kauffman CA. Increasing resistance of Staphylococcus aureus to ciprofloxacin. Antimicrobial Agents and Chemotherapy 34: 1862–1863, 1990

    Article  PubMed  CAS  Google Scholar 

  • Davis JE. Aminoglyclitol-aminocyclitol antibiotics and their modifying enzymes. In Lorian (Ed.) Antibiotics in laboratory medicine, 2nd ed., pp. 790–809, Williams & Wilkins, Baltimore, 1986

    Google Scholar 

  • Gaynes RP, Weinstein RA, Chamberlin W, Kabins SA. Antibiotic resistant flora in nursing home patients admitted to the hospital. Archives of Internal Medicine 145: 1804–1807, 1985

    Article  PubMed  CAS  Google Scholar 

  • Goldstein FW, Coutrot A, Sieffer A, Acar JF. Percentages and distributions of teicoplanin- and vancomycin-resistant strains among coagulase-negative staphylococci. Antimicrobial Agents and Chemotherapy 34: 899–900, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gross RJ, Rowe B, Cheasty T, Thomas LV. Increase in drug resistance among Shigella dysenteriae, Shigella flexneri and Shigella boydii. British Medical Journal 283: 575–576, 1981

    Article  PubMed  CAS  Google Scholar 

  • Harder KJ, Nikaido H, Matsuhashi M. Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the OMP-F porin. Antimicrobial Agents and Chemotherapy 20: 549–552, 1981

    Article  PubMed  CAS  Google Scholar 

  • Holmberg SD, Solomon SL, Blake PA. Health and economic impacts of antimicrobial resistance. Reviews of Infectious Diseases 9: 1065–1075, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Souza KS, Ng EY, McHugh GL, et al. Mechanisms of quinolone resistance in Escherichia coli characterization of nfxB, and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrobial Agents and Chemotherapy 33: 283–289, 1989

    Article  PubMed  CAS  Google Scholar 

  • Jacoby GA, Archer GL. New mechanisms of bacterial resistance to antimicrobial agents. New England Journal of Medicine 324: 601–612, 1991

    Article  PubMed  CAS  Google Scholar 

  • Jacoby GA, Medeiros AA, O’Brien T, Pinto ME, Jiang H. Broad-spectrum, transmissible β-lactamases. New England Journal of Medicine 319: 723–724, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kitzis MD, Liassine N, Ferre B, Gutmann L, Acar JF, et al. In vitro activities of 15 oral β-lactams against Klebsiella pneumoniae harboring new extended-spectrum β-lactamases. Antimicrobial Agents and Chemotherapy 34: 1783–1786, 1990

    Article  PubMed  CAS  Google Scholar 

  • Leclercq R, Derlot E, Weber M, Duval J, Courvalin P. Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy 33: 10–15, 1989

    Article  PubMed  CAS  Google Scholar 

  • Lindberg F, Normark S. Contribution of chromosomal β-lactamases to β-lactam resistance in enterobacteria. Reviews of Infectious Diseases 8 (Suppl. 3): S292–S304, 1986

    Article  PubMed  CAS  Google Scholar 

  • McGowan Jr JE, Hall EC, Parrott PL. Antimicrobial susceptibility in Gram-negative bacteremia: are nosocomial isolates really more resistant? Antimicrobial Agents and Chemotherapy 33: 1855–1859, 1989

    Article  PubMed  CAS  Google Scholar 

  • Murray BE. The life and times of the enterococcus. Clinical Microbiology Reviews 3: 46–65, 1990

    PubMed  CAS  Google Scholar 

  • Murray BE. New aspects of antimicrobial resistance and the resulting therapeutic dilemmas. Journal of Infectious Diseases 163: 1185–1194, 1991

    Article  Google Scholar 

  • Murray BE, Alvarado T, Kim K-H, Vorachit M, Jayanetra P, et al. Increasing resistance to trimethoprim-sulfamethoxazole among isolates of Escherichia coli in developing countries. Journal of Infectious Diseases 152: 1107–1113, 1985

    Article  PubMed  CAS  Google Scholar 

  • Murray BE, Rensimer ER, DuPont HL. Emergence of high-level trimethoprim resistance in fecal Escherichia coli during oral administration of trimethoprim or trimethoprim-sulfamethoxazole. New England Journal of Medicine 306: 130–135, 1982

    Article  PubMed  CAS  Google Scholar 

  • Murray BE, Singh KV, Markowitz SM, et al. Evidence for clonal spread of a single strain of β-lactamase-producing Enterococcus (Streptococcus) faecalis to six hospitals in five states. Journal of Infectious Diseases 163: 780–785, 1991

    Article  PubMed  CAS  Google Scholar 

  • Neu HC. The new beta-lactamase stable cephalosporins. Annals of Internal Medicine 97: 408–419, 1982

    PubMed  CAS  Google Scholar 

  • Neu HC. Beta-lactam antibiotics: structural relationships affecting in vitro and pharmacologic properties. Reviews of Infectious Diseases 8 (Suppl. 3): 237–259, 1986

    Article  Google Scholar 

  • Neu HC. New antibiotics: areas of appropriate use. Journal of Infectious Diseases 155: 403–417, 1987

    Article  PubMed  CAS  Google Scholar 

  • Neu HC. Cephalosporin antibiotics: molecules that respond to different needs. American Journal of Surgery 155: 1–4, 1988

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TF. Resistance of bacteria to antibacterial agents: report of task force 2. Reviews of Infectious Diseases 9: S244–S260, 1987

    Article  PubMed  Google Scholar 

  • Patterson JE, Wanger Z, Zscheck KK, Zervos MJ, Murray BE. Molecular epidemiology of β-lactamase-producing entero-cocci. Antimicrobial Agents and Chemotherapy 34: 302–305, 1990

    Article  PubMed  CAS  Google Scholar 

  • Philippon A, Labia R, Jacoby GA. Extended-spectrum β-lactamases. Antimicrobial Agents and Chemotherapy 33: 1131–1136, 1989

    Article  PubMed  CAS  Google Scholar 

  • Quinn JP, DiVencenzo CA, Foster J. Emergence of resistance to ceftazidime during therapy for Pseudomonas aeruginosa infections. Journal of Infectious Diseases 155: 942–947, 1987

    Article  PubMed  CAS  Google Scholar 

  • Quinn JP, Dudek EJ, DiVencenzo CA, Lucks DA, Lerner SA. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. Journal of Infectious Diseases 154: 289–294, 1986

    Article  PubMed  CAS  Google Scholar 

  • Reves RR, Fong M, Pickering LK, Bartlett III A, Alvarez M, et al. Risk factors for fecal colonization with trimethoprim-resistant and multiresistant Escherichia coli among children in day-care centers in Houston, Texas. Antimicrobial Agents and Chemotherapy 34: 1429–1434, 1990

    Article  PubMed  CAS  Google Scholar 

  • Reves RR, Murray BE, Pickering LK, Prado D, Maddock M, et al. Children with trimethoprim- and ampicillin-resistant fecal Escherichia coli in day care centers. Journal of Infectious Diseases 156: 758–762, 1987

    Article  PubMed  CAS  Google Scholar 

  • Richmond MH, Sykes RB. The beta-lactamases of Gram-negative bacteria and their possible physiological role. Advances in Microbial Physiology 9: 31–88, 1973

    Article  PubMed  CAS  Google Scholar 

  • Sahm DF, Olsen L. In vitro detection of enterococcal vancomycin resistance. Antimicrobial Agents and Chemotherapy 34: 1846–1848, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders Jr WE. Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Reviews of Infectious Diseases 5: 639–648, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sanders EW, Sanders CC. Inducible beta-lactamases: clinical and epidemiologic implications for use of newer cephalosporins. Reviews of Infectious Diseases 10: 830–838, 1988

    Article  PubMed  Google Scholar 

  • Schaefler S. Methicillin-resistant strains of Staphylococcus aureus resistant to quinolones. Journal of Clinical Microbiology 27: 335–336, 1989

    PubMed  CAS  Google Scholar 

  • Schwalbe RS, Stapleton JT, Gilligan PH. Emergence of vancomycin resistance to coagulase-negative staphylococci. New England Journal of Medicine 316: 927–931, 1987

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Kumada T, Hsielt W-C, Ching H-Y, Chong Y, et al. Comparison of aminoglycoside resistance patterns in Japan, Formosa, and Korea, Chile and the United States. Antimicrobial Agents and Chemotherapy 28: 282–288, 1985

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG, Cromie KD. Penicillin-binding proteins of Gram-negative bacteria. Reviews of Infectious Diseases 10: 699–711, 1988

    Article  PubMed  CAS  Google Scholar 

  • Sykes RB, Matthew M. The beta-lactamases of Gram-negative bacteria and their role in resistance to beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 2: 115–157, 1976

    Article  PubMed  CAS  Google Scholar 

  • Tauxe RV, Puhr ND, Wells JG, Hargrett-Bean N, Blake PA. Antimicrobial resistance of Shigella isolates in the USA: the importance of international travelers. Journal of Infectious Diseases 162: 1107–1111, 1990

    Article  PubMed  CAS  Google Scholar 

  • Zighelboim S, Tomasz A. Penicillin-binding proteins of multiple antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy 17: 434–442, 1980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Noriega, E., Morfin-Otero, R., Atilano-Duran, G. et al. Bacterial Resistance to Antimicrobial Agents in Mexico. Drug Invest 4 (Suppl 2), 2–8 (1992). https://doi.org/10.1007/BF03258351

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258351

Keywords

Navigation