Skip to main content
Log in

The Influence of Fabricating Technologies on the Structure and Properties of YBa2Cu3O7−x

  • Feature
  • Materials Technology
  • Published:
JOM Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M.K. Wu, et al., “Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-0 Compound System at Ambient Pressure,” Phys. Rev. Lett., 58 (1987), p. 908.

    Article  Google Scholar 

  2. J.W. Ekin et al., “Evidence of Weak Link and Anisotropy Limitations on the Transport Critical Current in Bulk Polycrystalline YBa2Cu3Ox.J. Appl. Phys., 62 (1987), p. 4821.

    Article  Google Scholar 

  3. J.W. Ekin, “Transport Critical Current in Bulk Sintered YBa2Cu3Ox. and Possibilities for its Enhancement,” Adv. Ceram. Mtls., 2 (l987), p. 586.

    Google Scholar 

  4. H. Kumakura, M. Uehara and K. Togano, “Localized Large Superconducting Critical Currents in YBa2Cu3O9,” Appl. Phys. Lett., 51 (1987), p. 1557.

    Article  Google Scholar 

  5. K. Funaki et al., “A Superconducting Sub-Structure in Sintered YBa2Cu3O7−x Plates,” Jap. J. Appl. Phys., 26 (1987) p. 1445.

    Article  Google Scholar 

  6. H. Ledbetter, “Elastic Properties of Metal-Oxide Superconductors,” J. Metals., 40 (1988), p. 24.

    Google Scholar 

  7. C.J. Jou, E.R. Weber, J. Washburn and W.A. Soffa, “Decoration of Flux Pinning Positions in YBa2Cu3O7−x Superconductors,” Appl. Phys. Lett., 52 (1988), p. 326.

    Article  Google Scholar 

  8. T. Matsushita et al., “Estimate of Attainable Critical Current Density in Superconducting YBa2Cu3O7−x.Jap. J. Appl. Phys., 26 (1987), p. 1524.

    Article  Google Scholar 

  9. G.J. Yurek, J.B. Vander Sande, D.A. Rudman and Y.M. Chiang, “Superconducting Microcomposites by Oxidation of Metallic Precursors,” J. Metals, 40 (1988), p. 16.

    Google Scholar 

  10. I.K. Gopalakrishnan, J.V. Yakhmi, M.A. Vaidya and R.M. Iyer, “Effect of Slow Cooling Rates on the Superconducting Characteristics of YBa2Cu3O7−xAppl. Phys. Lett., 51 (1987), p. 1367.

    Article  Google Scholar 

  11. Y. Takagi, R. Liang, Y. Inaguma and T. Nakamura, “Influence of Annealing Condition on the Superconducting Behavior of High-Tc Oxide YBa2Cu3O7−xJap. J. Appl. Phys., 26 (1987), p. 1266.

    Article  Google Scholar 

  12. R. Beyers et al., “Annealing Treatment Effects on Structure and Superconductivity in YBa2Cu3O9−xt’,” Appl. Phys. Lett., 51 (1987), p. 614.

    Article  Google Scholar 

  13. X. Jiang et al., “Effect of Crystal Structure on Superconductivity ofY-Ba-Cu-O System Compounds,” Appl. Phys. Lett., 51 (1987), p. 625.

    Article  Google Scholar 

  14. D.R. Clarke, “The Development of High-Tc Ceramic Superconductors: An Introduction,” Adv. Ceram. Mtls., 2 (1987), p. 273.

    Google Scholar 

  15. S. Jin et al., “Fabrication of Dense YBa2Cu3O7−x Superconductor Wire by Molten Oxide Processing,” Appl. Phys. Lett., 51 (1987), p. 943.

    Article  Google Scholar 

  16. “Superconductor’s Critical Current at a New High,” Science, 238 (1987), p. 1655.

  17. A.H. Hermann and Z.Z. Sheng, “Melt-Processible Rare Earth Ba-Cu-0 Superconductors Based on Molten Ba-Cu Oxides,” Appl. Phys. Lett., 51 (1987), p. 1854.

    Article  Google Scholar 

  18. T. Komatsu et al., “Liquid Quenched Superconductor Ba-Y-Cu-0 with Tczerg = 88 K and AC Josephson Effect at 77 K,” Jap. J. AppT.Phys., 51 (1987), p. 1148.

    Article  Google Scholar 

  19. V. Selvamanickam and K. Salama, “Mechanical Properties of Partially Meltable Superconducting YBa2Cu3O7−xt’” Proceedings of the 1988 Fourth Annual TMS Northeast Regional Meeting, to be published by TMS.

  20. Y. Oda etal., “Superconductivity ofYBa2(Cu1−xFex)3Oy,” Jap. J. Appl. Phys. 26 (1987), p. 1660.

    Article  Google Scholar 

  21. M. Mehbod et al., “Influence of Fe Impurities on the Y-Ba-Cu-0 Superconducting System,” Phys. Rev. B., 36 (1987), p. 8819.

    Article  Google Scholar 

  22. J.P. Franck, J. Jung and M.A.K. Mohammed, “Superconductivity in the System (AlxY1−x)Ba2Cu3O6.5+xt’Phys. Rev. B., 36 (1987), p. 2308.

    Google Scholar 

  23. T. Siegrist et. al., “Aluminium Substitution in YBa2Cu3O7−x,” Phys. Rev. B., 36 (1987), p. 8365.

    Article  Google Scholar 

  24. D. Cahen, Z. Moisi and M. Schwatrz, “Effects of Ag/Cu Substitution in YBa2Cu3O7−x Superconductors,” Mat. Res. Bull., 22 (1987), p. 1581.

    Article  Google Scholar 

  25. I.W. Chen et al., “Texture Development in YBa2Cu3Ox by Hot Extrusion and Hot-pressing,” Comm. Am. Ceram. Soc., 70 (1987), p. 388.

    Article  Google Scholar 

  26. R.F. Cook, T.M. Shaw and P.R. Duncombe, “Fracture Properties of Polycrystalline YBa2Cu3Oxt’Adv. Ceram. Mtls., 2 (1987), p. 606.

    Google Scholar 

  27. S.H. Kilcoyne and R. Cywinski, “Improving Inter-Grain Contact in High-T Superconducting Ceramic Cinters,” J. Phys. D:Appl. Phys., 20 (1987), p. 1327.

    Article  Google Scholar 

  28. A. Safari, J.B. Watchman, Jr., C. Ward and V. Parkhe, “Processing Study of High Temperature Superconducting Y-Ba-Cu-O Ceramics,” Adv. Ceram. Mtls., 2 (1987), p. 492.

    Google Scholar 

  29. N.McN. Alford et al., “Physical and Mechanical Properties ofYBa2Cu3O7−x Superconductors,” J. Mat Sci., to be published.

  30. K. Salama and C.K. Ling, “The Effect of Stress on the Temperature Dependence of Ultrasonic Velocity,” J. Appl. Phys., 30 (1980), p. 1505.

    Article  Google Scholar 

  31. G.W. Crabtree et al., “Fabrication, Mechanical Properties, Heat Capacity, Oxygen Diffusion, and the Effect of Alkali Earth Ion Substitution on High Tc, Superconductors,” Adv. Ceram. Mtls., 2 (1987), p. 444.

    Google Scholar 

  32. J.E. Blendell et al., “Processing-Property Relations for YBa2Cu3O7−x High Tc Superconductors,” Adv. Ceram. Mtls., 2 (1987), p. 512.

    Google Scholar 

  33. J.L. Tallon, A.H. Schuitema and N.E. Tapp, “Soft Mode Behavior in the Orthorhombic to Tetragonal Transition in the High Tc Superconductor YBa2Cu3O7−xt’Appl. Phys. Lett., 52 (1988), p. 507.

    Article  Google Scholar 

  34. S. Block, G.J. Piermarini, R. G. Munro and W. Wong-Ng, “The Bulk Modulus and Young’s Modulus of the Superconductors YBa2Cu3O7−xAdv.Ceram. Mtls., 2 (1987), p. 601.

    Google Scholar 

  35. Timoshenko and Kreider, “Theory of Plates and Shells,” McGraw-Hill, (1959).

  36. S. Jin et al., “Stress and Field Dependence of Critical Current in YBa2Cu3O7−x Superconductors,” Appl. Phys. Lett., 51 (1987), p. 855.

    Article  Google Scholar 

  37. G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements,” J. Am. Ceram. Soc., 64 (1981), p. 533.

    Article  Google Scholar 

  38. N.D. Patel et al., “Electrical, Mechanical and Ultrasonic Properties of a Sintering-Aid Modified YBa2Cu3Ox High Tc Superconductor,” Adv. Ceram. Mtls., 2 (1987), p. 615.

    Google Scholar 

  39. H. Takei et al., “Growth of YBa2Cu3Ox Single Crystals with Superconducting Transition above 90 K,” Jap. J. Appl. Phys., 26 (1987), p. 1425.

    Article  Google Scholar 

  40. M.A. Damento, K.A. Gschneider, Jr., and R.W. McCallum, “Preparation of Single Crystals of Superconducting YBa2Cu3O7−x from CuO Melts,” Appl. Phys. Lett., 51 (1987), p. 690.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salama, K., Ravi-Chandar, K., Selvamanickam, V. et al. The Influence of Fabricating Technologies on the Structure and Properties of YBa2Cu3O7−x . JOM 40, 6–10 (1988). https://doi.org/10.1007/BF03258112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258112

Keywords

Navigation