Skip to main content
Log in

Synergism of Microstructure, Mechanisms and Mechanics in Fracture

  • Physical & Mechanical Metallurgy
  • Conference Review
  • Published:
JOM Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. “Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials,” ASTM Designation E399-83, Annual Book of ASTM Standards, Volume 03.01, 1983, pp. 518–553.

    Google Scholar 

  2. Fracture Toughness Evaluation by R-Curve Methods, ASTM STP 527, American Society for Testing and Materials, 1973.

    Google Scholar 

  3. J. A. Begley and J. D. Landes, “The J Integral as a Fracture Criterion,” Fracture Toughness, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American Society for Testing and Materials, 1972, pp. 1–20.

    Google Scholar 

  4. J. D. Landes and J. A. Begley, “The Effect of Specimen Geometry on Jic,” Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American Society for Testing and Materials, 1972, pp. 24–39.

    Google Scholar 

  5. P. C. Paris, H. Tada, A. Zahoor and H. Ernst, “The Theory of Instability of the Tearing Mode of Elastic-Plastic Crack Growth,” Elastic-Plastic Fracture, ASTM STP 668, J. D. Landes, J. A. Begley and G. A. Clarke, eds., American Society for Testing and Materials, 1979, pp. 5–36.

    Chapter  Google Scholar 

  6. P. K. Liaw, T. R. Leax, R. S. Williams and M. G. Peck, “Near-Threshold Fatigue Crack Growth Behavior in Copper,” Metallurgical Transactions A, Volume 13A, September 1982, pp. 1607–1618.

    Article  Google Scholar 

  7. P. K. Liaw, T. R. Leax, R. S. Williams and M. G. Peck, “Influence of Oxide-Induced Crack Closure in Near-Threshold Fatigue Crack Growth Behavior,” Acta Metallurgical, Vol. 30, 1982, pp. 2071–2078.

    Article  Google Scholar 

  8. R. M. McMeeking, “Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic Materials and Implications for Fracture,” Journal of Mechanics and Physics of Solids, Vol. 25 (1977), pp. 357–381.

    Article  Google Scholar 

  9. H. C. Rogers, “The Effect of Material Variables on Ductility,” ASM Seminar, October 1967, ASM, Metals Park, OH, 1967, pp. 31–61.

    Google Scholar 

  10. T. B. Cox and J. R. Low, Jr., “An Investigation of the Plastic Fracture of AISI 4340 and 18 Nickel 200 Grade Maraging Steels,” Metallurgical Transactions, American Society for Metal and The Metallurgical Society of AIME, Vol. 5 (1974), pp. 1457–1470.

    Google Scholar 

  11. R. H. VanStone, R. H. Merchant and J. R. Low, Jr., “Investigation of the Plastic Fracture of High Strength Aluminum Alloys,” Fatigue and Fracture Toughness-Cryogenic Behavior, ASTM STP 556, ASTM, Philadelphia, PA, 1974, pp. 93–124.

    Google Scholar 

  12. J. R. Rice and D. M. Tracy, “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” Journal Mechanics and Physics of Solids, Vol. 217 (1969), pp. 201–217.

    Article  Google Scholar 

  13. F. A. McClintock, “Local Criteria for Ductile Fracture,” International Journal of Fracture Mechanics, Vol. 4 (1968), pp. 101–130.

    Article  Google Scholar 

  14. J. R. Rice and M. A. Johnson, “The Role of Large Crack Tip Geometry Changes in Plane Strain Fracture,” Inelastic Behavior of Solids, M. F. Kannien, W. F. Adler, A. R. Rosenfield and R. I. Jaffee, eds., McGraw-Hill Book Co., New York, NY, 1970, pp. 641–672.

    Google Scholar 

  15. D. S. Dugdale, J. Mech. Phys. Solids 8, (1960), p. 100.

    Article  Google Scholar 

  16. G. Michot, A. George and G. Champier, “Dislocations Developed Around Crack Tips in Silicon and Their Influence on Fracture Toughness,” in Fracture and the Role of Microstructure, K. L. Maurer and F. E. Matzer, ed., EMAS Ltd., Warley, U.K., 1982, pp. 30–35.

    Google Scholar 

  17. B. J. Dagleish, A. Fakhr, P. L. Pratt and R. D. Rawlings, “The Fracture Toughness-Microstructure Relationship of Alumina-Based Ceramics,” Adv. in Fract. Res., ICF 5, 4, D. Francois, ed., Pergamon Press, New York, N.Y., 1982, pp. 2031–2038.

    Google Scholar 

  18. W. W. Gerberich and K. A. Peterson, “Micro and Macro Mechanics of Crack Growth,” K. Sadananda, B. B. Rath and D. J. Michel, eds., TMS-AIME, Warrendale, PA, 1982.

  19. S. Suresh, “Crack Deflection: Implications for the Growth of Long and Short Fatigue Cracks,” Met. Trans. 14A (11) (1983), pp. 2375–2385.

    Google Scholar 

  20. J. A. Ewing and J. C. W. Humphery, Phil. Trans., A200, (1903), p. 241.

    Google Scholar 

  21. P. J. E. Forsyth, J. Inst. Metals, 80, (1951), p. 181.

    Google Scholar 

  22. W. L. Morris and M. R. James, “Statistical Aspects of Fatigue Failure Due to Alloy Microstructure,” ASTM STP 811, American Society for Testing and Materials, Philadelphia, PA, 1983, p. 179.

    Google Scholar 

  23. D. Taylor, “Euromech Colloquium on Short Fatigue Cracks,” Fatigue of Engng. Mater. Struct., 5, (1982), p. 305.

    Article  Google Scholar 

  24. N. E. Dowling and J. A. Begley, “Fatigue Crack Growth During Gross Plasticity and the J-Integral,” ASTM STP 590, American Society for Testing and Materials, Philadelphia, PA, 1976, p. 82.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, J.M. Synergism of Microstructure, Mechanisms and Mechanics in Fracture. JOM 37, 58–64 (1985). https://doi.org/10.1007/BF03257517

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257517

Keywords

Navigation