Skip to main content
Log in

Dose Estimation

A Key Step in Malignancies Drug Development

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

This paper presents state-of-the-art statistical methods for dose-finding experiments in first-in-man clinical studies of drugs for the treatment of malignancies. Most early-phase clinical trials are not hypothesis driven, which might be the reason why statistical considerations have been largely ignored in dose-finding studies. The standard experimental design for dose-finding clinical studies employs a rule-based, dose-escalation scheme in which escalation depends on the number of patients at a dose level who experience dose-limiting toxicity. The standard design is widely used because of its algorithm-based simplicity for clinical investigators.

In the last two decades, new approaches for dose-finding have been proposed, all aiming to (i) model the toxicity of a new treatment as a percentile of the dose-toxicity relationship; (ii) minimize the number of patients treated at unacceptably high toxic dose levels; and (iii) minimize the number of patients needed to complete the study. In this paper, we describe some of these methodologies in simple terms for nonstatisticians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

Notes

  1. A gain function is the mathematical representation in Bayesian decision theory of an improving situation1

References

  1. Reigner BG, Blesch KS. Estimating the starting dose for entry into humans: principles and practice. Eur J Clin Pharmacol 2002; 57 (12): 835–45

    Article  PubMed  CAS  Google Scholar 

  2. Zhou Y. Choice of designs and doses for early phase trials. Fundam Clin Pharmacol 2004; 18 (3): 373–8

    Article  PubMed  CAS  Google Scholar 

  3. Chevret S. Statistical methods for dose-finding experiments: statistics in practice. Chichester: John Wiley & Sons Ltd, 2006

    Book  Google Scholar 

  4. Rosenberger WF, Haines LM. Competing designs for phase I clinical trials: a review. Stat Med 2002; 21 (18): 2757–70

    Article  PubMed  Google Scholar 

  5. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46 (1): 33–48

    Article  PubMed  Google Scholar 

  6. Whitehead J, Brunier H. Bayesian decision procedures for dose determining experiments. Stat Med 1995; 14 (9–10): 885–93; discussion 895–9

    Article  PubMed  CAS  Google Scholar 

  7. Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med 1998; 17 (10): 1103–20

    Article  PubMed  CAS  Google Scholar 

  8. Shih WJ, Lin Y. Traditional and modified algorithm-based designs for phase I cancer clinical trials. In: Chevret S, editor. Statistical methods for dose-finding experiments. Chichester: John Wiley & Sons Ltd, 2006: 61–90

    Google Scholar 

  9. O’Quigley J, Zohar S. Experimental designs for phase I and phase I/II dose-finding studies. Br J Cancer 2006; 94 (5): 609–13

    PubMed  Google Scholar 

  10. Faries D. Practical modifications of the continual reassessment method for phase I cancer clinical trials. J Biopharm Stat 1994; 4 (2): 147–64

    Article  PubMed  CAS  Google Scholar 

  11. Goodman SN, Zahurak ML, Piantadosi S. Some practical improvements in the continual reassessment method for phase I studies. Stat Med 1995; 14 (11): 1149–61

    Article  PubMed  CAS  Google Scholar 

  12. Korn EL, Midthune D, Chen TT, et al. A comparison of two phase I trial designs. Stat Med 1994; 13 (18): 1799–806

    Article  PubMed  CAS  Google Scholar 

  13. Storer BE. Design and analysis of phase I clinical trials. Biometrics 1989; 45 (3): 925–37

    Article  PubMed  CAS  Google Scholar 

  14. Simon R, Freidlin B, Rubinstein L, et al. Accelerated titration designs for phase I clinical trials in oncology. J Natl Cancer Inst 1997; 89 (15): 1138–47

    Article  PubMed  CAS  Google Scholar 

  15. Dancey J, Freidlin B, Rubinstein LV. Accelerated titration designs. In: Chevret S, editor. Statistical methods for dose-finding experiments. Chichester: John Wiley & Sons Ltd, 2006: 91–113

    Chapter  Google Scholar 

  16. Rosenberger WF. New directions in adaptive designs. Stat Sci 1996; 11 (2): 137–49

    Article  Google Scholar 

  17. Gasparini M, Eisele J. A curve-free method for phase I clinical trials. Biometrics 2000; 56 (2): 609–15

    Article  PubMed  CAS  Google Scholar 

  18. Rogatko A, Babb JS, Tighiouart M, et al. New paradigm in dose-finding trials: patient-specific dosing and beyond phase I. Clin Cancer Res 2005; 11 (15): 5342–6

    Article  PubMed  CAS  Google Scholar 

  19. Whitehead J, Williamson D. Bayesian decision procedures based on logistic regression models for dose-finding studies. J Biopharm Stat 1998; 8 (3): 445–67

    Article  PubMed  CAS  Google Scholar 

  20. Ivanova A. A new dose-finding design for bivariate outcomes. Biometrics 2003; 59 (4): 1001–7

    Article  PubMed  Google Scholar 

  21. O’Quigley J, Hughes MD, Fenton T. Dose-finding designs for HIV studies. Biometrics 2001; 57 (4): 1018–29

    Article  PubMed  Google Scholar 

  22. Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. Biometrics 2004; 60 (3): 684–93

    Article  PubMed  Google Scholar 

  23. Whitehead J, Zhou Y, Stevens J, et al. An evaluation of a bayesian method of dose escalation based on bivariate binary responses. J Biopharm Stat 2004; 14 (4): 969–83

    Article  PubMed  Google Scholar 

  24. Zohar S, O’Quigley J. Identifying the most successful dose (MSD) in dose-finding studies in cancer. Pharm Stat 2006; 5 (3): 187–99

    Article  PubMed  Google Scholar 

  25. Zohar S, Chevret S. Recent developments in adaptive designs for phase I/II dose- finding studies. J Biopharm Stat. In press

  26. Levy V, Zohar S, Bardin C, et al. A phase I dose-finding and pharmacokinetic study of subcutaneous semisynthetic homoharringtonine (ssHHT) in patients with advanced acute myeloid leukaemia. Br J Cancer 2006; 95 (3): 253–9

    Article  PubMed  CAS  Google Scholar 

  27. Zohar S, O’Quigley J. Optimal designs for estimating the most successful dose. Stat Med 2006; 25 (24): 4311–20

    Article  PubMed  Google Scholar 

  28. Rogatko A, Babb JS, Wang H, et al. Patient characteristics compete with dose as predictors of acute treatment toxicity in early phase clinical trials. Clin Cancer Res 2004; 10 (14): 4645–51

    Article  PubMed  CAS  Google Scholar 

  29. International Conference on Harmonisation. E9: statistical principles for clinical trials. 1998 Sep [online]. Available from URL: http://www.fda.gov/cder/gui-dance/ICH_E9-fnl.PDF [Accessed 2007 Oct 30]

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Zohar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zohar, S., Levy, V. Dose Estimation. Pharm Med 22, 35–40 (2008). https://doi.org/10.1007/BF03256680

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256680

Keywords

Navigation