Fast design of repeat ground track orbits in high-fidelity geopotentials


The existence of families of periodic, repeat ground track orbits in full geopotentials is demonstrated. The basic families are made of almost circular orbits except in the vicinity of the critical inclination (63.4/116.6 deg), where the eccentricity of the repeat orbits grows for almost fixed inclination. Computation of specific repeat ground track orbits for mission design can be automated providing the nominal solution in a fast, straightforward way. We illustrate this with the computation of the TOPEX nominal orbit in a 140 × 140 truncation of the GRACE Gravity Model.

This is a preview of subscription content, access via your institution.


  1. [1]

    LARA, M. “Searching for Repeating Ground Track Orbits: A Systematic Approach,” The Journal of the Astronautical Sciences, Vol. 47, 1999, pp. 177–188.

    Google Scholar 

  2. [2]

    LARA, M. “Repeat Ground Track Orbits of the Earth Tesseral Problem as Bifurcations of the Equatorial Family of Periodic Orbits,” Celestial Mechanics and Dynamical Astronomy, Vol. 86, No. 2, 2003, pp. 143–162.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    LARA, M. and RUSSELL, R. P. “On the Computation of a Science Orbit About Europa,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 259–263.

    MathSciNet  Article  Google Scholar 

  4. [4]

    RUSSELL, R. P. and LARA, M. “Long Lifetime Lunar Repeat Ground Track Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, 2007, pp. 982–993.

    MathSciNet  Article  Google Scholar 

  5. [5]

    SEIDELMANN, P. K., ARCHINAL, B. A., AHEARN, M. F., CONRAD, A., CONSOLMAGNO, G. J., HESTROFFER, D., HILTON, J. L., KRASINSKY, G. A., NEUMANN, G., OBERST, J., STOOKE, P., TEDESCO, E. F., THOLEN, D. J., THOMAS, P. C., and WILLIAMS, I. P. “Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2006,” Celestial Mechanics and Dynamical Astronomy, Vol. 98, No. 3, 2007, DOI 10.1007/s10569-007-9072-y, pp. 155–180.

    MATH  Article  Google Scholar 

  6. [6]

    IRIGOYEN, M. and SIMÓ, C. “Non Integrability of the Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 55, No. 3, 1993, pp. 281–287.

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    DEPRIT, A. and Henrard, J. “Construction of Orbits Asymptotic to a Periodic Orbit,” The Astronomical Journal, Vol. 72, No. 2, 1969, pp. 308–316.

    Article  Google Scholar 

  8. [8]

    TAPLEY, B., RIES, J., BETTADPUR, S., CHAMBERS, D., CHENG, M., CONDI, F., GUNTER, B., KANG, Z., NAGEL, P., PASTOR, R., PEKKER, T., POOLE, S., and WANG, F. “GGM02-An Improved Earth Gravity Field Model from GRACE,” Journal of Geodesy, Vol. 79, 2005, DOI 10.1007/s00190-005-0480-z, pp. 467–478.

    Article  Google Scholar 

  9. [9]

    LARA, M. and PELÁEZ, J. “On the Numerical Continuation of Periodic Orbits: An Intrinsic, 3-Dimensional, Differential, Predictor-Corrector Algorithm,” Astronomy and Astrophysics, Vol. 389, Feb. 2002, pp. 692–701.

    MATH  Article  Google Scholar 

  10. [10]

    HENÒN, M. “Exploration Numérique du Problème Restreint. II.—Masses égales, stabilité des orbites périodiques,” Annales d’Astrophysique, Vol. 28, No. 2, 1965, pp. 992–1007.

    Google Scholar 

  11. [11]

    VALLADO, D.A. Fundamentals of Astrodynamics and Applications, 2nd edition, 2004, Space Technology Library, Microcosm Press & Kluwer Academic Publishers, pp. 792 ff.

    Google Scholar 

  12. [12]

    LARA, M. Sadsam: a Software Assistant for Designing Satellite Missions, Report CNES num. DTS/MPI/MS/MN/99-053, 1999, 75 pages.

    Google Scholar 

  13. [13]

    FRAUENHOLZ, R. B., BHAT, R. S., and SHAPIRO, B. E. “Analysis of the TOPEX/Poseidon Operational Orbit: Observed Variations and Why,” Journal of Spacecraft and Rockets, Vol. 35, No. 2, 1998, pp. 212–224.

    Article  Google Scholar 

  14. [14]

    BROUCKE, R. “Stability of Periodic Orbits in the Elliptic, Restricted Three-Body Problem,” AIAA Journal, Vol. 7, 1969, pp. 1003–1009.

    MATH  Article  Google Scholar 

  15. [15]

    LARA, M. and SAN JUAN, J. F. “Dynamic Behavior of an Orbiter Around Europa,” Journal of Guidance, Control and Dynamics, Vol. 28, No. 2, 2005, pp. 291–297.

    Article  Google Scholar 

  16. [16]

    BROUCKE, R. “Numerical Integration of Periodic Orbits in the Main Problem of Artificial Satellite Theory,” Celestial Mechanics and Dynamical Astronomy, Vol. 58, No. 2, 1994, pp. 99–123.

    MathSciNet  Article  Google Scholar 

  17. [17]

    BROUCKE, R. “Periodic Collision Orbits in the Elliptic Restricted Three-Body Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 3, 1971, pp. 461–477.

    MATH  Google Scholar 

  18. [18]

    COFFEY, S., DEPRIT, A., and DEPRIT, E. “Frozen Orbits for Satellites Close to an Earth-Like Planet,” Celestial Mechanics and Dynamical Astronomy, Vol. 59, No. 1, 1994, pp. 37–72.

    MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    PINES, S. “Uniform Representation of the Gravitational Potential and its Derivatives,” AIAA Journal, Vol. 11, Nov. 1973, pp. 1508–1511.

    MATH  Article  Google Scholar 

  20. [20]

    LUNDBERG, J. B. and SCHUTZ, B. E. “Recursion Formulas of Legendre Functions for use with Nonsingular Geopotential Models,” Journal of Guidance, Vol. 11, No. 1, 1988, pp. 31–38.

    MATH  Article  Google Scholar 

  21. [21]

    HAIRER, E., NØRSETT, S. P., and WANNER, G. Solving Ordinary Differential Equations. Nonstiff Problems, 2nd edition, 1993, Springer Series in Computational Mathematics, Vol. 8, pp. 181–185.

    MATH  Google Scholar 

  22. [22]

    BOND, V. “Error Propagation in the Numerical Solution of the Differential Equations of Orbital Mechanics,” Celestial Mechanics, Vol. 27, No. 1, 1982, pp. 65–77.

    MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    LAWSON, C. L. and HANSON, R. J. Solving Ordinary Least Squares Problems, 1974, Prentice-Hall.

    Google Scholar 

  24. [24]

    Math77 Reference Manual, edited by Lisa K. Jones and Laurie Seaton, Language Systems Corporation, Sterling, Va., 1994.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Martin Lara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lara, M., Russell, R.P. Fast design of repeat ground track orbits in high-fidelity geopotentials. J of Astronaut Sci 56, 311–324 (2008).

Download citation


  • Periodic Orbit
  • Gravity Field
  • Semimajor Axis
  • Jacobi Constant
  • Differential Correction