Skip to main content

Advertisement

Log in

Detecting Adaptive Immunity

Applications in Transplantation Monitoring

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

In recent decades, continuous improvements in immunosuppressive therapy have led to a significant increase in kidney allograft survival. Despite innovative developments and improvements in immunosuppression, chronic allograft injury and late graft loss still remain major causes of morbidity and mortality. In clinical practice, long-term immunosuppression is adapted and fine-tuned according to drug levels, kidney function, and biopsy results. As an invasive procedure, indication biopsy still represents an indispensible diagnostic gold standard. However, in an effort to further improve outcomes on the basis of individualized treatment, there is an urgent need for noninvasive assays, as well as biomarkers, to more accurately monitor allogeneic responses and predict the risk of acute and chronic allograft rejection. This article discusses strategies for immune monitoring of T-cell responsiveness and humoral alloreactivity. Furthermore, new microarray and gene profiling data are highlighted, which may identify hyporesponsive transplant recipients who could benefit from a reduction or even withdrawal of immunosuppression. Finally, supplementary transplant risk assessment markers, such as soluble CD30 and urinary effector molecule analysis, are discussed as promising new tools. Recent developments and improvements in test principles to monitor and predict allograft immunity are encouraging and may herald the transition of present empiric immunosuppression to individualized immunosuppressive treatment. Nonetheless, before implementation of immune monitoring in routine clinical practice, there is still a need for prospective trials designed to clarify the actual diagnostic potential of individual test systems in a therapeutic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Racusen LC, Solez K, Colvin RB, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999; 55(2): 713–23

    Article  PubMed  CAS  Google Scholar 

  2. Racusen LC, Halloran PF, Solez K. Banff 2003 meeting report: new diagnostic insights and standards. Am J Transplant 2004; 4(10): 1562–6

    Article  PubMed  Google Scholar 

  3. Solez K, Colvin RB, Racusen LC, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 2008; 8(4): 753–60

    Article  PubMed  CAS  Google Scholar 

  4. Kozakowski N, Regele H. Biopsy diagnostics in renal allograft rejection: from histomorphology to biological function. Transpl Int 2009; 22(10): 945–53

    Article  PubMed  Google Scholar 

  5. Böhmig GA, Regele H, Hörl WH. Protocol biopsies after kidney transplantation. Transpl Int 2005; 18(2): 131–9

    Article  PubMed  Google Scholar 

  6. Thaunat O, Legendre C, Morelon E, et al. To biopsy or not to biopsy? Should we screen the histology of stable renal grafts? Transplantation 2007; 84(6): 671–6

    Article  PubMed  Google Scholar 

  7. Nankivell BJ, Chapman JR. The significance of subclinical rejection and the value of protocol biopsies. Am J Transplant 2006; 6(9): 2006–12

    Article  PubMed  CAS  Google Scholar 

  8. Moreso F, Ibernon M, Goma M, et al. Subclinical rejection associated with chronic allograft nephropathy in protocol biopsies as a risk factor for late graft loss. Am J Transplant 2006; 6(4): 747–52

    Article  PubMed  CAS  Google Scholar 

  9. Rush D. Protocol transplant biopsies: an underutilized tool in kidney transplantation. Clin J Am Soc Nephrol 2006; 1(1): 138–43

    Article  PubMed  Google Scholar 

  10. Rush D, Arlen D, Boucher A, et al. Lack of benefit of early protocol biopsies in renal transplant patients receiving TAC and MMF: a randomized study. Am J Transplant 2007; 7(11): 2538–45

    Article  PubMed  CAS  Google Scholar 

  11. Furness PN, Philpott CM, Chorbadjian MT, et al. Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates. Transplantation 2003; 76(6): 969–73

    Article  PubMed  Google Scholar 

  12. Patel R, Terasaki PI. Significance of the positive crossmatch test in kidney transplantation. N Engl J Med 1969; 280(14): 735–9

    Article  PubMed  CAS  Google Scholar 

  13. McKenna RM, Takemoto SK, Terasaki PI. Anti-HLA antibodies after solid organ transplantation. Transplantation 2000; 69(3): 319–26

    Article  PubMed  CAS  Google Scholar 

  14. Gebel HM, Bray RA, Nickerson P. Pre-transplant assessment of donor-reactive, HLA-specific antibodies in renal transplantation: contraindication vs risk. Am J Transplant 2003; 3(12): 1488–500

    Article  PubMed  Google Scholar 

  15. Terasaki PI. Humoral theory of transplantation. Am J Transplant 2003; 3(6): 665–73

    Article  PubMed  Google Scholar 

  16. Racusen LC, Colvin RB, Solez K, et al. Antibody-mediated rejection criteria: an addition to the Banff 97 classification of renal allograft rejection. Am J Transplant 2003; 3(6): 708–14

    Article  PubMed  Google Scholar 

  17. Flechner SM, Kerman RH, Van Buren CT, et al. The use of cyclosporine in living-related renal transplantation: donor-specific hyporesponsiveness and steroid withdrawal. Transplantation 1984; 38(6): 685–91

    Article  PubMed  CAS  Google Scholar 

  18. Reinsmoen NL, Matas AJ. Evidence that improved late renal transplant outcome correlates with the development of in vitro donor antigen-specific hyporeactivity. Transplantation 1993; 55(5): 1017–23

    Article  PubMed  CAS  Google Scholar 

  19. Ghobrial II, Morris AG, Booth LJ. Clinical significance of in vitro donor-specific hyporesponsiveness in renal allograft recipients as demonstrated by the MLR. Transpl Int 1994; 7(6): 420–7

    Article  PubMed  CAS  Google Scholar 

  20. Böhmig GA, Säemann MD, Bergmann M, et al. Long-term evaluation of proliferative donor antigen-specific reactivity in cadaveric kidney transplant recipients. Transpl Int 2000; 13(3): 187–93

    Article  PubMed  Google Scholar 

  21. Stiller CR, Sinclair NR, Abrahams S, et al. Transplant monitoring: patterns of the immune response. Proc Eur Dial Transplant Assoc 1976; 12: 415–22

    PubMed  CAS  Google Scholar 

  22. Kristensen T, Grunnet N, Hansen HE, et al. Immunological diagnosis of rejection in human renal allotransplanted patients: a prospective study. Proc Eur Dial Transplant Assoc 1977; 14: 313–20

    PubMed  CAS  Google Scholar 

  23. Goulmy E, Persijn G, Blokland E, et al. Cell-mediated lympholysis studies in renal allograft recipients. Transplantation 1981; 31(3): 210–7

    Article  PubMed  CAS  Google Scholar 

  24. Carrodeguas L, Orosz CG, Waldman WJ, et al. Trans vivo analysis of human delayed-type hypersensitivity reactivity. Hum Immunol 1999; 60(8): 640–51

    Article  PubMed  CAS  Google Scholar 

  25. VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest 2000; 106(1): 145–55

    Article  PubMed  CAS  Google Scholar 

  26. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 2008; 358(4): 353–61

    Article  PubMed  CAS  Google Scholar 

  27. van Besouw NM, van der Mast BJ, de Kuiper P, et al. Donor-specific T-cell reactivity identifies kidney transplant patients in whom immunosuppressive therapy can be safely reduced. Transplantation 2000; 70(1): 136–43

    PubMed  Google Scholar 

  28. Kowalski R, Post D, Schneider MC, et al. Immune cell function testing: an adjunct to therapeutic drug monitoring in transplant patient management. Clin Transplant 2003; 17(2): 77–88

    Article  PubMed  Google Scholar 

  29. Kowalski RJ, Post DR, Mannon RB, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation 2006; 82(5): 663–8

    Article  PubMed  Google Scholar 

  30. Zeevi A, Britz JA, Bentlejewski CA, et al. Monitoring immune function during tacrolimus tapering in small bowel transplant recipients. Transpl Immunol 2005; 15(1): 17–24

    Article  PubMed  CAS  Google Scholar 

  31. Serban G, Whittaker V, Fan J, et al. Significance of immune cell function monitoring in renal transplantation after Thymoglobulin induction therapy. Hum Immunol 2009 Nov; 70(11): 882–90

    Article  PubMed  CAS  Google Scholar 

  32. Gebauer BS, Hricik DE, Atallah A, et al. Evolution of the enzyme-linked immunosorbent spot assay for post-transplant alloreactivity as a potentially useful immune monitoring tool. Am J Transplant 2002; 2(9): 857–66

    Article  PubMed  CAS  Google Scholar 

  33. Hricik DE, Rodriguez V, Riley J, et al. Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients. Am J Transplant 2003; 3(7): 878–84

    Article  PubMed  CAS  Google Scholar 

  34. Nickel P, Presber F, Bold G, et al. Enzyme-linked immunosorbent spot assay for donor-reactive interferon-gamma-producing cells identifies T-cell presensitization and correlates with graft function at 6 and 12 months in renal-transplant recipients. Transplantation 2004; 78(11): 1640–6

    Article  PubMed  CAS  Google Scholar 

  35. Bestard O, Nickel P, Cruzado JM, et al. Circulating alloreactive T cells correlate with graft function in longstanding renal transplant recipients. J Am Soc Nephrol 2008; 19(7): 1419–29

    Article  PubMed  Google Scholar 

  36. Tary-Lehmann M, Hricik DE, Justice AC, et al. Enzyme-linked immunosorbent assay spot detection of interferon-gamma and interleukin 5-producing cells as a predictive marker for renal allograft failure. Transplantation 1998; 66(2): 219–24

    Article  PubMed  CAS  Google Scholar 

  37. van den Boogaardt DE, van Miert PP, de Vaal YJ, et al. The ratio of interferon-gamma and interleukin-10 producing donor-specific cells as an in vitro monitoring tool for renal transplant patients. Transplantation 2006; 82(6): 844–8

    Article  PubMed  CAS  Google Scholar 

  38. Macedo C, Orkis EA, Popescu I, et al. Contribution of naive and memory T-cell populations to the human alloimmune response. Am J Transplant 2009; 9(9): 2057–66

    Article  PubMed  CAS  Google Scholar 

  39. Süsal C, Opelz G. Options for immunologic support of renal transplantation through the HLA and immunology laboratories. Am J Transplant 2007; 7(6): 1450–6

    Article  PubMed  CAS  Google Scholar 

  40. Zachary AA, Leffell MS. Detecting and monitoring human leukocyte antigen-specific antibodies. Hum Immunol 2008; 69(10): 591–604

    Article  PubMed  CAS  Google Scholar 

  41. Tait BD, Hudson F, Cantwell L, et al. Review article: Luminex technology for HLA antibody detection in organ transplantation. Nephrology (Carlton) 2009; 14(2): 247–54

    Article  CAS  Google Scholar 

  42. Solez K, Colvin RB, Racusen LC, et al. Banff’05 meeting report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am J Transplant 2007; 7(3): 518–26

    Article  PubMed  CAS  Google Scholar 

  43. Böhmig GA, Exner M, Habicht A, et al. Capillary C4d deposition in kidney allografts: a specific marker of alloantibody-dependent graft injury. J Am Soc Nephrol 2002; 13(4): 1091–9

    PubMed  Google Scholar 

  44. Mauiyyedi S, Crespo M, Collins AB, et al. Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J Am Soc Nephrol 2002; 13(3): 779–87

    PubMed  Google Scholar 

  45. Terasaki PI, Ozawa M. Predictive value of HLA antibodies and serum creatinine in chronic rejection: results of a 2-year prospective trial. Transplantation 2005; 80(9): 1194–7

    Article  PubMed  CAS  Google Scholar 

  46. Bartel G, Regele H, Wahrmann M, et al. Posttransplant HLA alloreactivity in stable kidney transplant recipients-incidences and impact on long-term allograft outcomes. Am J Transplant 2008; 8(12): 2652–60

    Article  PubMed  CAS  Google Scholar 

  47. Lachmann N, Terasaki PI, Budde K, et al. Anti-human leukocyte antigen and donor-specific antibodies detected by Luminex posttransplant serve as bio-markers for chronic rejection of renal allografts. Transplantation 2009; 87(10): 1505–13

    Article  PubMed  CAS  Google Scholar 

  48. Böhmig GA, Bartel G, Regele H, et al. Prospects and limitations of post-transplantation alloantibody detection in renal transplantation. Hum Immunol 2009 Aug; 70(8): 640–4

    Article  PubMed  CAS  Google Scholar 

  49. Suberbielle C, Legendre C, Chkoff N, et al. Anti-HLA sensitization after renal transplant excision: a retrospective study in 84 patients. Transplant Proc 1996; 28(5): 2814

    PubMed  CAS  Google Scholar 

  50. Adeyi OA, Girnita AL, Howe J, et al. Serum analysis after transplant nephrectomy reveals restricted antibody specificity patterns against structurally defined HLA class I mismatches. Transpl Immunol 2005; 14(1): 53–62

    Article  PubMed  CAS  Google Scholar 

  51. Billen EV, Christiaans MH, Lee J, et al. Donor-directed HLA antibodies before and after transplantectomy detected by the Luminex single antigen assay. Transplantation 2009; 87(4): 563–9

    Article  PubMed  CAS  Google Scholar 

  52. Perry DK, Pollinger HS, Burns JM, et al. Two novel assays of alloantibody-secreting cells demonstrating resistance to desensitization with IVIG and rATG. Am J Transplant 2008; 8(1): 133–43

    Article  PubMed  CAS  Google Scholar 

  53. Perry DK, Burns JM, Pollinger HS, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant 2009; 9(1): 201–9

    Article  PubMed  CAS  Google Scholar 

  54. Han M, Rogers JA, Lavingia B, et al. Peripheral blood B cells producing donor-specific HLA antibodies in vitro. Hum Immunol 2009; 70(1): 29–34

    Article  PubMed  CAS  Google Scholar 

  55. Fan X, Ang A, Pollock-Barziv SM, et al. Donor-specific B-cell tolerance after ABO-incompatible infant heart transplantation. Nat Med 2004; 10(11): 1227–33

    Article  PubMed  CAS  Google Scholar 

  56. Pelzl S, Opelz G, Wiesel M, et al. Soluble CD30 as a predictor of kidney graft outcome. Transplantation 2002; 73(1): 3–6

    Article  PubMed  CAS  Google Scholar 

  57. Süsal C, Pelzl S, Döhler B, et al. Identification of highly responsive kidney transplant recipients using pretransplant soluble CD30. J Am Soc Nephrol 2002; 13(6): 1650–6

    Article  PubMed  Google Scholar 

  58. Süsal C, Pelzl S, Opelz G. Strong human leukocyte antigen matching effect in nonsensitized kidney recipients with high pretransplant soluble CD30. Transplantation 2003; 76(8): 1231–2

    Article  PubMed  Google Scholar 

  59. Rajakariar R, Jivanji N, Varagunam M, et al. High pre-transplant soluble CD 30 levels are predictive of the grade of rejection. Am J Transplant 2005; 5(8): 1922–5

    Article  PubMed  Google Scholar 

  60. Platt RE, Wu KS, Poole K, et al. Soluble CD30 as a prognostic factor for outcome following renal transplantation. J Clin Pathol 2009; 62(7): 662–3

    Article  PubMed  CAS  Google Scholar 

  61. Slavcev A, Honsova E, Lodererova A, et al. Soluble CD30 in patients with antibody-mediated rejection of the kidney allograft. Transpl Immunol 2007; 18(1): 22–7

    Article  PubMed  CAS  Google Scholar 

  62. Pelzl S, Opelz G, Daniel V, et al. Evaluation of posttransplantation soluble CD30 for diagnosis of acute renal allograft rejection. Transplantation 2003; 75(3): 421–3

    Article  PubMed  CAS  Google Scholar 

  63. Langan LL, Park LP, Hughes TL, et al. Post-transplant HLA class II antibodies and high soluble CD30 levels are independently associated with poor kidney graft survival. Am J Transplant 2007; 7(4): 847–56

    Article  PubMed  CAS  Google Scholar 

  64. Weimer R, Süsal C, Yildiz S, et al. Post-transplant sCD30 and neopterin as predictors of chronic allograft nephropathy: impact of different immunosuppressive regimens. Am J Transplant 2006; 6(8): 1865–74

    Article  PubMed  CAS  Google Scholar 

  65. Nafar M, Farrokhi F, Vaezi M, et al. Pre-transplant and post-transplant soluble CD30 for prediction and diagnosis of acute kidney allograft rejection. Int Urol Nephrol 2009; 41(3): 687–93

    Article  PubMed  CAS  Google Scholar 

  66. Cervelli C, Fontecchio G, Scimitarra M, et al. Evaluation of serum sCD30 in renal transplantation patients with and without acute rejection. Transplant Proc 2009; 41(4): 1159–61

    Article  PubMed  CAS  Google Scholar 

  67. Sebille F, Gagne K, Guillet M, et al. Direct recognition of foreign MHC determinants by naive T cells mobilizes specific Vbeta families without skewing of the complementarity-determining region 3 length distribution. J Immunol 2001; 167(6): 3082–8

    PubMed  CAS  Google Scholar 

  68. Gagne K, Brouard S, Giral M, et al. Highly altered V beta repertoire of T cells infiltrating long-term rejected kidney allografts. J Immunol 2000; 164(3): 1553–63

    PubMed  CAS  Google Scholar 

  69. Brouard S, Dupont A, Giral M, et al. Operationally tolerant and minimally immunosuppressed kidney recipients display strongly altered blood T-cell clonal regulation. Am J Transplant 2005; 5(2): 330–40

    Article  PubMed  Google Scholar 

  70. Boros P, Bromberg JS. Human FOXP3+ regulatory T cells in transplantation. Am J Transplant 2009; 9(8): 1719–24

    Article  PubMed  CAS  Google Scholar 

  71. Suciu-Foca N, Manavalan JS, Scotto L, et al. Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells: review. Int Immunopharmacol 2005; 5(1): 7–11

    Article  PubMed  CAS  Google Scholar 

  72. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002; 3(3): 237–43

    Article  PubMed  CAS  Google Scholar 

  73. Pretagostini R, Cinti P, Lai Q, et al. Minimization of immunosuppressive therapy and immunological monitoring of kidney transplant recipients with long-term allograft survival. Transpl Immunol 2008; 20(1-2): 3–5

    Article  PubMed  CAS  Google Scholar 

  74. Dijke IE, Korevaar SS, Caliskan K, et al. Inadequate immune regulatory function of CD4+CD25bright+FoxP3+ T cells in heart transplant patients who experience acute cellular rejection. Transplantation 2009; 87(8): 1191–200

    Article  PubMed  Google Scholar 

  75. Yapici U, Bemelman FJ, Scheepstra CG, et al. Intragraft FOXP3 protein or mRNA during acute renal allograft rejection correlates with inflammation, fibrosis, and poor renal outcome. Transplantation 2009; 87(9): 1377–80

    Article  PubMed  CAS  Google Scholar 

  76. Ruggenenti P, Perico N, Gotti E, et al. Sirolimus versus cyclosporine therapy increases circulating regulatory T cells, but does not protect renal transplant patients given alemtuzumab induction from chronic allograft injury. Transplantation 2007; 84(8): 956–64

    Article  PubMed  CAS  Google Scholar 

  77. Dijke IE, Weimar W, Baan CC. Regulatory T cells after organ transplantation: where does their action take place? Hum Immunol 2008; 69(7): 389–98

    Article  PubMed  CAS  Google Scholar 

  78. Kreijveld E, Koenen HJ, van Cranenbroek B, et al. Immunological monitoring of renal transplant recipients to predict acute allograft rejection following the discontinuation of tacrolimus. PLoS One 2008; 3(7): e2711

    Article  PubMed  CAS  Google Scholar 

  79. Bunnag S, Einecke G, Reeve J, et al. Molecular correlates of renal function in kidney transplant biopsies. J Am Soc Nephrol 2009; 20(5): 1149–60

    Article  PubMed  Google Scholar 

  80. Mengel M, Reeve J, Bunnag S, et al. Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am J Transplant 2009; 9(1): 169–78

    Article  PubMed  CAS  Google Scholar 

  81. Perco P, Kainz A, Wilflingseder J, et al. Histogenomics: association of gene expression patterns with histological parameters in kidney biopsies. Transplantation 2009; 87(2): 290–5

    Article  PubMed  CAS  Google Scholar 

  82. Saint-Mezard P, Berthier CC, Zhang H, et al. Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection. Transpl Int 2009; 22(3): 293–302

    Article  PubMed  CAS  Google Scholar 

  83. Flechner SM, Kurian SM, Head SR, et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am J Transplant 2004; 4(9): 1475–89

    Article  PubMed  Google Scholar 

  84. Deng MC, Eisen HJ, Mehra MR, et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant 2006; 6(1): 150–60

    Article  PubMed  CAS  Google Scholar 

  85. Brouard S, Mansfield E, Braud C, et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci U S A 2007; 104(39): 15448–53

    Article  PubMed  CAS  Google Scholar 

  86. Braud C, Baeten D, Giral M, et al. Immunosuppressive drug-free operational immune tolerance in human kidney transplant recipients: Part I. Blood gene expression statistical analysis. J Cell Biochem 2008; 103(6): 1681–92

    Article  PubMed  CAS  Google Scholar 

  87. Murphy GP, Williams PD, Merrin CE. Diagnostic value of lymphocyturia in renal allograft rejection in man. Urology 1973; 2(3): 227–30

    Article  PubMed  CAS  Google Scholar 

  88. Grunewald RW, Fiedler GM, Stock B, et al. Immunocytological determination of lymphocytes and monocytes/macrophages in urinary sediments of renal allograft recipients. Nephrol Dial Transplant 2000; 15(6): 888–92

    Article  PubMed  CAS  Google Scholar 

  89. Margreiter R, Fuchs D, Hausen A, et al. Neopterin as a new biochemical marker for diagnosis of allograft rejection: experience based upon evaluation of 100 consecutive cases. Transplantation 1983; 36(6): 650–3

    Article  PubMed  CAS  Google Scholar 

  90. Reibnegger G, Aichberger C, Fuchs D, et al. Posttransplant neopterin excretion in renal allograft recipients: a reliable diagnostic aid for acute rejection and a predictive marker of long-term graft survival. Transplantation 1991; 52(1): 58–63

    Article  PubMed  CAS  Google Scholar 

  91. Li B, Hartono C, Ding R, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 2001; 344(13): 947–54

    Article  PubMed  CAS  Google Scholar 

  92. Kotsch K, Mashreghi MF, Bold G, et al. Enhanced granulysin mRNA expression in urinary sediment in early and delayed acute renal allograft rejection. Transplantation 2004; 77(12): 1866–75

    Article  PubMed  CAS  Google Scholar 

  93. Dadhania D, Muthukumar T, Ding R, et al. Molecular signatures of urinary cells distinguish acute rejection of renal allografts from urinary tract infection. Transplantation 2003; 75(10): 1752–4

    Article  PubMed  Google Scholar 

  94. Ozbay A, Torring C, Olsen R, et al. Transcriptional profiles in urine during acute rejection, bacteriuria, CMV infection and stable graft function after renal transplantation. Scand J Immunol 2009; 69(4): 357–65

    Article  PubMed  CAS  Google Scholar 

  95. Yannaraki M, Rebibou JM, Ducloux D, et al. Urinary cytotoxic molecular markers for a noninvasive diagnosis in acute renal transplant rejection. Transpl Int 2006; 19(9): 759–68

    Article  PubMed  CAS  Google Scholar 

  96. Ding R, Li B, Muthukumar T, et al. CD103 mRNA levels in urinary cells predict acute rejection of renal allografts. Transplantation 2003; 75(8): 1307–12

    Article  PubMed  CAS  Google Scholar 

  97. Tatapudi RR, Muthukumar T, Dadhania D, et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int 2004; 65(6): 2390–7

    Article  PubMed  CAS  Google Scholar 

  98. Muthukumar T, Dadhania D, Ding R, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 2005; 353(22): 2342–51

    Article  PubMed  CAS  Google Scholar 

  99. Renesto PG, Ponciano VC, Cenedeze MA, et al. High expression of Tim-3 mRNA in urinary cells from kidney transplant recipients with acute rejection. Am J Transplant 2007; 7(6): 1661–5

    Article  PubMed  CAS  Google Scholar 

  100. Manfro RC, Aquino-Dias EC, Joelsons G,et al. Noninvasive Tim-3 messenger RNA evaluation in renal transplant recipients with graft dysfunction. Transplantation 2008; 86(12): 1869–74

    Article  PubMed  CAS  Google Scholar 

  101. Schaub S, Rush D, Wilkins J, et al. Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol 2004; 15(1): 219–27

    Article  PubMed  CAS  Google Scholar 

  102. Schaub S, Wilkins JA, Antonovici M, et al. Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am J Transplant 2005; 5 (4 Pt 1): 729–38

    Article  PubMed  CAS  Google Scholar 

  103. Schaub S, Mayr M, Hönger G, et al. Detection of subclinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathology. Transplantation 2007; 84(1): 104–12

    Article  PubMed  CAS  Google Scholar 

  104. O’Riordan E, Orlova TN, Mei JJ, et al. Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol 2004; 15(12): 3240–8

    Article  PubMed  Google Scholar 

  105. O’Riordan E, Orlova TN, Podust VN, et al. Characterization of urinary peptide biomarkers of acute rejection in renal allografts. Am J Transplant 2007; 7(4): 930–40

    Article  PubMed  CAS  Google Scholar 

  106. Mao Y, Yu J, Chen J, et al. Diagnosis of renal allograft subclinical rejection by urine protein fingerprint analysis. Transpl Immunol 2008; 18(3): 255–9

    Article  PubMed  CAS  Google Scholar 

  107. Wang JN, Zhou Y, Zhu TY, et al. Prediction of acute cellular renal allograft rejection by urinary metabolomics using MALDI-FTMS. J Proteome Res 2008; 7(8): 3597–601

    Article  PubMed  CAS  Google Scholar 

  108. Zhang Y, Oetting WS, Harvey SB, et al. Urinary peptide patterns in native kidneys and kidney allografts. Transplantation 2009; 87(12): 1807–13

    Article  PubMed  CAS  Google Scholar 

  109. Quintana LF, Sole-Gonzalez A, Kalko SG, et al. Urine proteomics to detect biomarkers for chronic allograft dysfunction. J Am Soc Nephrol 2009; 20(2): 428–35

    Article  PubMed  CAS  Google Scholar 

  110. Hu H, Kwun J, Aizenstein BD, et al. Noninvasive detection of acute and chronic injuries in human renal transplant by elevation of multiple cytokines/ chemokines in urine. Transplantation 2009; 87(12): 1814–20

    Article  PubMed  CAS  Google Scholar 

  111. Bechtel U, Scheuer R, Landgraf R, et al. Assessment of soluble adhesion molecules (sICAM-1, sVCAM-1, sELAM-1) and complement cleavage products (sC4d, sC5b-9) in urine: clinical monitoring of renal allograft recipients. Transplantation 1994; 58(8): 905–11

    Article  PubMed  CAS  Google Scholar 

  112. Hönger G, Mayr M, Dickenmann M, et al. Urinary C4d does not correlate with C4d-staining in peritubular capillaries but reflects nonspecific glomerular injury. Transplantation 2008; 85(4): 542–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg A. Böhmig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhmig, G.A., Wahrmann, M. & Säemann, M.D. Detecting Adaptive Immunity. Mol Diag Ther 14, 1–11 (2010). https://doi.org/10.1007/BF03256348

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256348

Keywords

Navigation