Molecular Diagnosis & Therapy

, Volume 13, Issue 4, pp 245–259 | Cite as

Salivary Biomarkers for Clinical Applications

Review Article

Abstract

For clinical applications such as monitoring health status, disease onset and progression, and treatment outcome, there are three necessary prerequisites: (i) a simple method for collecting biologic samples, ideally noninvasively; (ii) specific biomarkers associated with health or disease; and (iii) a technology platform to rapidly utilize the biomarkers. Saliva, often regarded as the ‘mirror of the body’, is a perfect surrogate medium to be applied for clinical diagnostics. Saliva is readily accessible via a totally noninvasive method. Salivary biomarkers, whether produced by healthy individuals or by individuals affected by specific diseases, are sentinel molecules that could be used to scrutinize health and disease surveillance. The visionary investment by the US National Institute of Dental and Craniofacial Research, the discovery of salivary biomarkers, and the ongoing development of salivary diagnostic technologies have addressed its diagnostic value for clinical applications. The availability of more sophisticated analytic techniques gives optimism that saliva can eventually be placed as a biomedium for clinical diagnostics. This review presents current salivary biomarker research and technology developmental efforts for clinical applications.

References

  1. 1.
    The Wong Lab, Dental Research Institute, UCLA School of Dentistry. Salivaomics knowledge base [online]. Available at URL: http://www.skb.ucla.edu [Accessed 2009 Jul 27]
  2. 2.
    Chittenden RH, Mendel LB, Jackson HC. A further study of the influence of alcohol and alcoholic drinks upon digestion, with special reference to secretion. Am JPhysiol 1898; 1: 164–209Google Scholar
  3. 3.
    Kirk EC. Saliva as an index of faulty metabolism. Dent Dig 1903; 9: 1126–38Google Scholar
  4. 4.
    Maliszewski TF, Bass DE. True and apparent thiocyanate in body fluids of smokers and nonsmokers. J Appl Physiol 1955 Nov; 8(3): 289–91PubMedGoogle Scholar
  5. 5.
    Edwards DA, Fletcher K, Rowlands EN. Antagonism between perchlorate, iodide, thiocyanate, and nitrate for secretion in human saliva; analogy with the iodide trap of the thyroid. Lancet 1954 Mar 6; 266(6810): 498–9PubMedGoogle Scholar
  6. 6.
    Tannenbaum SR, Sinskey AJ, Weisman M, et al. Nitrite in human saliva: its possible relationship to nitrosamine formation. J Natl Cancer Inst 1974 Jul; 53(1): 79–84PubMedGoogle Scholar
  7. 7.
    Mandel ID. Dentistry 1980–89: a profession in transition. Percy T. Phillips memorial lecture — 1990. N Y State Dent J 1990 Aug–Sep; 56(7): 30–2PubMedGoogle Scholar
  8. 8.
    Swanson M, Cacace L, Chun G, et al. Saliva calcium and potassium concentrations in the detection of digitalis toxicity. Circulation 1973 Apr; 47(4): 736–43PubMedGoogle Scholar
  9. 9.
    de Gier JJ, ‘t Hart BJ, Wilderink PF, et al. Comparison of plasma and saliva levels of diazepam. Br J Clin Pharmacol 1980 Aug; 10(2): 151–5PubMedGoogle Scholar
  10. 10.
    Knott C, Hamshaw-Thomas A, Reynolds F. Phenytoin-valproate interaction: importance of saliva monitoring in epilepsy. Br Med J (Clin Res Ed) 1982 Jan 2; 284(6308): 13–6Google Scholar
  11. 11.
    Jarrett RF, Clark DA, Josephs SF, et al. Detection of human herpesvirus-6 DNA in peripheral blood and saliva. J Med Virol 1990 Sep; 32(1): 73–6PubMedGoogle Scholar
  12. 12.
    Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995 Oct 20; 270(5235): 467–70PubMedGoogle Scholar
  13. 13.
    Li Y, Zhou X, St John MA, et al. RNA profiling of cell-free saliva using microarray technology. J Dent Res 2004 Mar; 83(3): 199–203PubMedGoogle Scholar
  14. 14.
    Li Y, St John MA, Zhou X, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res 2004 Dec 15; 10(24): 8442–50PubMedGoogle Scholar
  15. 15.
    Mandel ID. Salivary diagnosis: promises, promises. Ann N Y Acad Sci 1993 Sep 20; 694: 1–10PubMedGoogle Scholar
  16. 16.
    Veenstra TD, Conrads TP, Hood BL, et al. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 2005 Apr; 4(4): 409–18PubMedGoogle Scholar
  17. 17.
    Service RF. Proteomics: proteomics ponders prime time. Science 2008 Sep 26; 321(5897): 1758–61PubMedGoogle Scholar
  18. 18.
    Hu S, Loo JA, Wong DT. Human saliva proteome analysis and disease biomarker discovery. Expert Rev Proteomics 2007 Aug; 4(4): 531–8PubMedGoogle Scholar
  19. 19.
    Hu S, Yen Y, Ann D, et al. Implications of salivary proteomics in drug discovery and development: a focus on cancer drug discovery. Drug Discov Today 2007 Nov; 12(21–22): 911–6PubMedGoogle Scholar
  20. 20.
    Denny P, Hagen FK, Hardt M, et al. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res 2008 May; 7(5): 1994–2006PubMedGoogle Scholar
  21. 21.
    Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics 2006 Dec; 6(23): 6326–53PubMedGoogle Scholar
  22. 22.
    Yates 3rd JR. Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 2004; 33: 297–316PubMedGoogle Scholar
  23. 23.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003 Mar 13; 422(6928): 198–207PubMedGoogle Scholar
  24. 24.
    Huang CM. Comparative proteomic analysis of human whole saliva. Arch Oral Biol 2004 Dec; 49(12): 951–62PubMedGoogle Scholar
  25. 25.
    Hirtz C, Chevalier F, Centeno D, et al. Complexity of the human whole saliva proteome. J Physiol Biochem 2005 Sep; 61(3): 469–80PubMedGoogle Scholar
  26. 26.
    Hu S, Xie Y, Ramachandran P, et al. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 2005 Apr; 5(6): 1714–28PubMedGoogle Scholar
  27. 27.
    Walz A, Stuhler K, Wattenberg A, et al. Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics 2006 Mar; 6(5): 1631–9PubMedGoogle Scholar
  28. 28.
    Hu S, Denny P, Xie Y, et al. Differentially expressed protein markers in human submandibular and sublingual secretions. Int J Oncol 2004 Nov; 25(5): 1423–30PubMedGoogle Scholar
  29. 29.
    Xie H, Rhodus NL, Griffin RJ, et al. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol Cell Proteomics 2005 Nov; 4(11): 1826–30PubMedGoogle Scholar
  30. 30.
    Guo T, Rudnick PA, Wang W, et al. Characterization of the human salivary proteome by capillary isoelectric focusing/nanoreversed-phase liquid chromatography coupled with ESI-tandem MS. J Proteome Res 2006 Jun; 5(6): 1469–78PubMedGoogle Scholar
  31. 31.
    St John MA, Li Y, Zhou X, et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2004 Aug; 130(8): 929–35Google Scholar
  32. 32.
    Greenlee RT, Murray T, Bolden S, et al. Cancer statistics, 2000. CA Cancer J Clin 2000 Jan–Feb; 50(1): 7–33PubMedGoogle Scholar
  33. 33.
    Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005 Mar–Apr; 55(2): 74–108PubMedGoogle Scholar
  34. 34.
    Hu S, Arellano M, Boontheung P, et al. Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res 2008 Oct 1; 14(19): 6246–52PubMedGoogle Scholar
  35. 35.
    Chen YC, Li TY, Tsai MF. Analysis of the saliva from patients with oral cancer by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2002; 16(5): 364–9PubMedGoogle Scholar
  36. 36.
    Mizukawa N, Sugiyama K, Fukunaga J, et al. Defensin-1, a peptide detected in the saliva of oral squamous cell carcinoma patients. Anticancer Res 1998 Nov–Dec; 18(6B): 4645–9PubMedGoogle Scholar
  37. 37.
    Rhodus NL, Ho V, Miller CS, et al. NF-kappaB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma. Cancer Detect Prev 2005; 29(1): 42–5PubMedGoogle Scholar
  38. 38.
    Fingleton B, Menon R, Carter KJ, et al. Proteinase activity in human and murine saliva as a biomarker for proteinase inhibitor efficacy. Clin Cancer Res 2004 Dec 1; 10(23): 7865–74PubMedGoogle Scholar
  39. 39.
    Franzmann EJ, Reategui EP, Carraway KL, et al. Salivary soluble CD44: a potential molecular marker for head and neck cancer. Cancer Epidemiol Biomarkers Prev 2005 Mar; 14(3): 735–9PubMedGoogle Scholar
  40. 40.
    Negri L, Pacchioni D, Calabrese F, et al. Serum and salivary CEA and GICA levels in oral cavity tumours. Int J Biol Markers 1988 Apr–Jun; 3(2): 107–12PubMedGoogle Scholar
  41. 41.
    Nagler R, Bahar G, Shpitzer T, et al. Concomitant analysis of salivary tumor markers: a new diagnostic tool for oral cancer. Clin Cancer Res 2006 Jul 1; 12(13): 3979–84PubMedGoogle Scholar
  42. 42.
    Mizukawa N, Sugiyama K, Ueno T, et al. Defensin-1, an antimicrobial peptide present in the saliva of patients with oral diseases. Oral Dis 1999 Apr; 5(2): 139–42PubMedGoogle Scholar
  43. 43.
    Pickering V, Jordan RC, Schmidt BL. Elevated salivary endothelin levels in oral cancer patients: a pilot study. Oral Oncol 2007 Jan; 43(1): 37–41PubMedGoogle Scholar
  44. 44.
    Zhong LP, Zhang CP, Zheng JW, et al. Increased cyfra 21-1 concentration in saliva from primary oral squamous cell carcinoma patients. Arch Oral Biol 2007 Nov; 52(11): 1079–87PubMedGoogle Scholar
  45. 45.
    Fernando D, Fowles J, Woodward A, et al. Legislation reduces exposure to second-hand tobacco smoke in New Zealand bars by about 90%. Tob Control 2007 Aug; 16(4): 235–8PubMedGoogle Scholar
  46. 46.
    Lyons AJ, Cui N. Salivary oncofoetal fibronectin and oral squamous cell carcinoma. J Oral Pathol Med 2000 Jul; 29(6): 267–70PubMedGoogle Scholar
  47. 47.
    Hu S, Wong DT. Oral cancer proteomics. Curr Opin Mol Ther 2007 Oct; 9(5): 467–76PubMedGoogle Scholar
  48. 48.
    Rhodus NL, Cheng B, Myers S, et al. The feasibility of monitoring NF-kappaB associated cytokines: TNF-alpha, IL-1alpha, IL-6, and IL-8 in whole saliva for the malignant transformation of oral lichen planus. Mol Carcinog 2005 Oct; 44(2): 77–82PubMedGoogle Scholar
  49. 49.
    Brailo V, Vucicevic-Boras V, Cekic-Arambasin A, et al. The significance of salivary interleukin 6 and tumor necrosis factor alpha in patients with oral leukoplakia. Oral Oncol 2006 Apr; 42(4): 370–3PubMedGoogle Scholar
  50. 50.
    Zhang Y, Lin M, Zhang S, et al. NF-kappaB-dependent cytokines in saliva and serum from patients with oral lichen planus: a study in an ethnic Chinese population. Cytokine 2008 Feb; 41(2): 144–9PubMedGoogle Scholar
  51. 51.
    Tao X, Huang Y, Li R, et al. Assessment of local angiogenesis and vascular endothelial growth factor in the patients with atrophic-erosive and reticular oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007 May; 103(5): 661–9PubMedGoogle Scholar
  52. 52.
    Rhodus NL, Cheng B, Myers S, et al. A comparison of the pro-inflammatory, NF-kappaB-dependent cytokines: TNF-alpha, IL-1-alpha, IL-6, and IL-8 in different oral fluids from oral lichen planus patients. Clin Immunol 2005 Mar; 114(3): 278–83PubMedGoogle Scholar
  53. 53.
    Jonsson R, Bolstad AI, Brokstad KA, et al. Sjogren’s syndrome: a plethora of clinical and immunological phenotypes with a complex genetic background. Ann N Y Acad Sci 2007 Jun; 1108: 433–47PubMedGoogle Scholar
  54. 54.
    Motegi K, Azuma M, Tamatani T, et al. Expression of aquaporin-5 in and fluid secretion from immortalized human salivary gland ductal cells by treatment with 5-aza-2′-deoxycytidine: a possibility for improvement of xerostomia in patients with Sjogren’s syndrome. Lab Invest 2005 Mar; 85(3): 342–53PubMedGoogle Scholar
  55. 55.
    Witte T. Antifodrin antibodies in Sjogren’s syndrome: a review. Ann N Y Acad Sci 2005 Jun; 1051: 235–9PubMedGoogle Scholar
  56. 56.
    Ben-Chetrit E, Fischel R, Rubinow A. Anti-SSA/Ro and anti-SSB/La antibodies in serum and saliva of patients with Sjogren’s syndrome. Clin Rheumatol 1993 Dec; 12(4): 471–4PubMedGoogle Scholar
  57. 57.
    Rhodus N, Dahmer L, Lindemann K, et al. s-IgA and cytokine levels in whole saliva of Sjogren’s syndrome patients before and after oral pilocarpine hydrochloride administration: a pilot study. Clin Oral Investig 1998 Dec; 2(4): 191–6PubMedGoogle Scholar
  58. 58.
    Ryu OH, Atkinson JC, Hoehn GT, et al. Identification of parotid salivary biomarkers in Sjogren’s syndrome by surface-enhanced laser desorption/ ionization time-of-flight mass spectrometry and two-dimensional difference gel electrophoresis. Rheumatology (Oxford) 2006 Sep; 45(9): 1077–86Google Scholar
  59. 59.
    Hu S, Wang J, Meijer J, et al. Salivary proteomic and genomic biomarkers for primary Sjogren’s syndrome. Arthritis Rheum 2007 Nov; 56(11): 3588–600PubMedGoogle Scholar
  60. 60.
    Halse AK, Marthinussen MC, Wahren-Herlenius M, et al. Isotype distribution of anti-Ro/SS-A and anti-La/SS-B antibodies in plasma and saliva of patients with Sjogren’s syndrome. Scand J Rheumatol 2000; 29(1): 13–9PubMedGoogle Scholar
  61. 61.
    Delaleu N, Immervoll H, Cornelius J, et al. Biomarker profiles in serum and saliva of experimental Sjogren’s syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther 2008; 10(1): R22PubMedGoogle Scholar
  62. 62.
    Delaleu N, Madureira AC, Immervoll H, et al. Inhibition of experimental Sjogren’s syndrome through immunization with HSP60 and its peptide amino acids 437–460. Arthritis Rheum 2008 Aug; 58(8): 2318–28PubMedGoogle Scholar
  63. 63.
    Mizukawa N, Sugiyama K, Ueno T, et al. Levels of human defensin-1, an antimicrobial peptide, in saliva of patients with oral inflammation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999 May; 87(5): 539–43PubMedGoogle Scholar
  64. 64.
    Cuida M, Halse AK, Johannessen AC, et al. Indicators of salivary gland inflammation in primary Sjogren’s syndrome. Eur J Oral Sci 1997 Jun; 105(3): 228–33PubMedGoogle Scholar
  65. 65.
    Kleinegger CL, Stoeckel DC, Kurago ZB. A comparison of salivary calprotectin levels in subjects with and without oral candidiasis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001 Jul; 92(1): 62–7PubMedGoogle Scholar
  66. 66.
    Sweet SP, Denbury AN, Challacombe SJ. Salivary calprotectin levels are raised in patients with oral candidiasis or Sjogren’s syndrome but decreased by HIV infection. Oral Microbiol Immunol 2001 Apr; 16(2): 119–23PubMedGoogle Scholar
  67. 67.
    Sorsa T, Suomalainen K, Uitto VJ. The role of gingival crevicular fluid and salivary interstitial collagenases in human periodontal diseases. Arch Oral Biol 1990; 35 Suppl.: 193–6SGoogle Scholar
  68. 68.
    Uitto VJ, Suomalainen K, Sorsa T. Salivary collagenase: origin, characteristics and relationship to periodontal health. J Periodontal Res 1990 May; 25(3): 135–42PubMedGoogle Scholar
  69. 69.
    Frodge BD, Ebersole JL, Kryscio RJ, et al. Bone remodeling biomarkers of periodontal disease in saliva. J Periodontol 2008 Oct; 79(10): 1913–9PubMedGoogle Scholar
  70. 70.
    Ishikawa I. Host responses in periodontal diseases: a preview. Periodontol 2000. 2007; 43: 9–13PubMedGoogle Scholar
  71. 71.
    Miller CS, King Jr CP, Langub MC, et al. Salivary biomarkers of existing periodontal disease: a cross-sectional study. J Am Dent Assoc 2006 Mar; 137(3): 322–9PubMedGoogle Scholar
  72. 72.
    Sorsa T, Mantyla P, Ronka H, et al. Scientific basis of a matrix metalloproteinase-8 specific chair-side test for monitoring periodontal and peri-implant health and disease. Ann N Y Acad Sci 1999 Jun 30; 878: 130–40PubMedGoogle Scholar
  73. 73.
    Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis 2004 Nov; 10(6): 311–8PubMedGoogle Scholar
  74. 74.
    Ingman T, Tervahartiala T, Ding Y, et al. Matrix metalloproteinases and their inhibitors in gingival crevicular fluid and saliva of periodontitis patients. J Clin Periodontol 1996 Dec; 23(12): 1127–32PubMedGoogle Scholar
  75. 75.
    Herr AE, Hatch AV, Throckmorton DJ, et al. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci U S A 2007 Mar 27; 104(13): 5268–73PubMedGoogle Scholar
  76. 76.
    Makela M, Salo T, Uitto VJ, et al. Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. J Dent Res 1994 Aug; 73(8): 1397–406PubMedGoogle Scholar
  77. 77.
    Pederson ED, Stanke SR, Whitener SJ, et al. Salivary levels of alpha 2-macroglobulin, alpha 1-antitrypsin, C-reactive protein, cathepsin G and elastase in humans with or without destructive periodontal disease. Arch Oral Biol 1995 Dec; 40(12): 1151–5PubMedGoogle Scholar
  78. 78.
    Nomura Y, Tamaki Y, Tanaka T, et al. Screening of periodontitis with salivary enzyme tests. J Oral Sci 2006 Dec; 48(4): 177–83PubMedGoogle Scholar
  79. 79.
    Hormia M, Thesleff I, Perheentupa J, et al. Increased rate of salivary epidermal growth factor secretion in patients with juvenile periodontitis. Scand J Dent Res 1993 Jun; 101(3): 138–44PubMedGoogle Scholar
  80. 80.
    Mogi M, Otogoto J, Ota N, et al. Interleukin 1 beta, interleukin 6, beta 2-microglobulin, and transforming growth factor-alpha in gingival crevicular fluid from human periodontal disease. Arch Oral Biol 1999 Jun; 44(6): 535–9PubMedGoogle Scholar
  81. 81.
    Salcetti JM, Moriarty JD, Cooper LF, et al. The clinical, microbial, and host response characteristics of the failing implant. Int J Oral Maxillofac Implants 1997 Jan–Feb; 12(1): 32–42PubMedGoogle Scholar
  82. 82.
    Skaleric U, Kramar B, Petelin M, et al. Changes in TGF-beta 1 levels in gingiva, crevicular fluid and serum associated with periodontal inflammation in humans and dogs. Eur J Oral Sci 1997 Apr; 105(2): 136–42PubMedGoogle Scholar
  83. 83.
    Garito ML, Prihoda TJ, McManus LM. Salivary PAF levels correlate with the severity of periodontal inflammation. J Dent Res 1995 Apr; 74(4): 1048–56PubMedGoogle Scholar
  84. 84.
    Booth V, Young S, Cruchley A, et al. Vascular endothelial growth factor in human periodontal disease. J Periodontal Res 1998 Nov; 33(8): 491–9PubMedGoogle Scholar
  85. 85.
    Taichman NS, Cruchley AT, Fletcher LM, et al. Vascular endothelial growth factor in normal human salivary glands and saliva: a possible role in the maintenance of mucosal homeostasis. Lab Invest 1998 Jul; 78(7): 869–75PubMedGoogle Scholar
  86. 86.
    Ohshima M, Fujikawa K, Akutagawa H, et al. Hepatocyte growth factor in saliva: a possible marker for periodontal disease status. J Oral Sci 2002 Mar; 44(1): 35–9PubMedGoogle Scholar
  87. 87.
    Kaufman E, Lamster IB. The diagnostic applications of saliva: a review. Crit Rev Oral Biol Med 2002; 13(2): 197–212PubMedGoogle Scholar
  88. 88.
    Dowling P, Wormald R, Meleady P, et al. Analysis of the saliva proteome from patients with head and neck squamous cell carcinoma reveals differences in abundance levels of proteins associated with tumour progression and metastasis. J Proteomics 2008 Jul 21; 71(2): 168–75PubMedGoogle Scholar
  89. 89.
    Franzmann EJ, Reategui EP, Pedroso F, et al. Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidemiol Biomarkers Prev 2007 Jul; 16(7): 1348–55PubMedGoogle Scholar
  90. 90.
    Streckfus CF, Bigler LR, Zwick M. The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva: a feasibility study. J Oral Pathol Med 2006 May; 35(5): 292–300PubMedGoogle Scholar
  91. 91.
    Streckfus C, Bigler L, Dellinger T, et al. The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma: a preliminary study. Clin Cancer Res 2000 Jun; 6(6): 2363–70PubMedGoogle Scholar
  92. 92.
    Streckfus C, Bigler L, Tucci M, et al. A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Invest 2000; 18(2): 101–9PubMedGoogle Scholar
  93. 93.
    Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer 2002 Mar; 2(3): 210–9PubMedGoogle Scholar
  94. 94.
    Giannobile WV, Al-Shammari KF, Sarment DP. Matrix molecules and growth factors as indicators of periodontal disease activity. Periodontol 2000 2003; 31: 125–34Google Scholar
  95. 95.
    Kaufman E, Lamster IB. Analysis of saliva for periodontal diagnosis: a review. J Clin Periodontol 2000 Jul; 27(7): 453–65PubMedGoogle Scholar
  96. 96.
    Kinney JS, Ramseier CA, Giannobile WV. Oral fluid-based biomarkers of alveolar bone loss in periodontitis. Ann N Y Acad Sci 2007 Mar; 1098: 230–51PubMedGoogle Scholar
  97. 97.
    Ozmeric N. Advances in periodontal disease markers. Clin Chim Acta 2004 May; 343(1–2): 1–16PubMedGoogle Scholar
  98. 98.
    Hu Z, Zimmermann BG, Zhou H, et al. Exon-level expression profiling: a comprehensive transcriptome analysis of oral fluids. Clin Chem 2008 May; 54(5): 824–32PubMedGoogle Scholar
  99. 99.
    Ballantyne J. Validity of messenger RNA expression analyses of human saliva [letter]. Clin Cancer Res 2007 Feb 15; 13(4): 1350PubMedGoogle Scholar
  100. 100.
    Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I. Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int 2006 Mar 10; 157(2–3): 181–6PubMedGoogle Scholar
  101. 101.
    Zubakov D, Hanekamp E, Kokshoorn M, et al. RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 2008 Mar; 122(2): 135–42PubMedGoogle Scholar
  102. 102.
    Rosas SL, Koch W, da Costa Carvalho MG, et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 2001 Feb 1; 61(3): 939–42PubMedGoogle Scholar
  103. 103.
    Spafford MF, Koch WM, Reed AL, et al. Detection of head and neck squamous cell carcinoma among exfoliated oral mucosal cells by micro-satellite analysis. Clin Cancer Res 2001 Mar; 7(3): 607–12PubMedGoogle Scholar
  104. 104.
    Mager DL, Haffajee AD, Devlin PM, et al. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 2005; 3: 27PubMedGoogle Scholar
  105. 105.
    Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001 Jul 18; 93(14): 1054–61PubMedGoogle Scholar
  106. 106.
    Li Y, Elashoff D, Oh M, et al. Serum circulating human mRNA profiling and its utility for oral cancer detection. J Clin Oncol 2006 Apr 10; 24(11): 1754–60PubMedGoogle Scholar
  107. 107.
    Hart TC. Genetic considerations of risk in human periodontal disease. Curr Opin Periodontol 1994; 3-11Google Scholar
  108. 108.
    Hassell TM, Harris EL. Genetic influences in caries and periodontal diseases. Crit Rev Oral Biol Med 1995; 6(4): 319–42PubMedGoogle Scholar
  109. 109.
    Hodge P, Michalowicz B. Genetic predisposition to periodontitis in children and young adults. Periodontol 20002001; 26: 113–34Google Scholar
  110. 110.
    Michalowicz BS. Genetic and heritable risk factors in periodontal disease. J Periodontol 1994 May; 65(5 Suppl.): 479–88PubMedGoogle Scholar
  111. 111.
    Sofaer JA. Genetic approaches in the study of periodontal diseases. J Clin Periodontol 1990 Aug; 17 (7 Pt 1): 401–8PubMedGoogle Scholar
  112. 112.
    Jordan WJ, Eskdale J, Lennon GP, et al. A non-conservative, coding single-nucleotide polymorphism in the N-terminal region of lactoferrin is associated with aggressive periodontitis in an African-American, but not a Caucasian population. Genes Immun 2005 Oct; 6(7): 632–5PubMedGoogle Scholar
  113. 113.
    Yoshie H, Tai H, Kobayashi T, et al. Salivary enzyme levels after scaling and interleukin-1 genotypes in Japanese patients with chronic periodontitis. J Periodontol 2007 Mar; 78(3): 498–503PubMedGoogle Scholar
  114. 114.
    Takane M, Sugano N, Iwasaki H, et al. New biomarker evidence of oxidative DNA damage in whole saliva from clinically healthy and periodontally diseased individuals. J Periodontol 2002 May; 73(5): 551–4PubMedGoogle Scholar
  115. 115.
    Sawamoto Y, Sugano N, Tanaka H, et al. Detection of periodontopathic bacteria and an oxidative stress marker in saliva from periodontitis patients. Oral Microbiol Immunol 2005 Aug; 20(4): 216–20PubMedGoogle Scholar
  116. 116.
    Aas JA, Paster BJ, Stokes LN, et al. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005 Nov; 43(11): 5721–32PubMedGoogle Scholar
  117. 117.
    Greenstein G, Lamster I. Bacterial transmission in periodontal diseases: a critical review. J Periodontol 1997 May; 68(5): 421–31PubMedGoogle Scholar
  118. 118.
    Quirynen M, De Soete M, Dierickx K, et al. The intra-oral translocation of periodontopathogens jeopardises the outcome of periodontal therapy: a review of the literature. J Clin Periodontol 2001 Jun; 28(6): 499–507PubMedGoogle Scholar
  119. 119.
    Asikainen S, Alaluusua S, Saxen L. Recovery of A. actinomycetemcomitans from teeth, tongue, and saliva. J Periodontol 1991 Mar; 62(3): 203–6PubMedGoogle Scholar
  120. 120.
    Mager DL, Haffajee AD, Socransky SS. Effects of periodontitis and smoking on the microbiota of oral mucous membranes and saliva in systemically healthy subjects. J Clin Periodontol 2003 Dec; 30(12): 1031–7PubMedGoogle Scholar
  121. 121.
    Paster BJ, Olsen I, Aas JA, et al. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 2006; 42: 80–7Google Scholar
  122. 122.
    Umeda M, Contreras A, Chen C, et al. The utility of whole saliva to detect the oral presence of periodontopathic bacteria. J Periodontol 1998 Jul; 69(7): 828–33PubMedGoogle Scholar
  123. 123.
    Slots J. Microbiology in periodontics. Tandlaegebladet 1986 Oct; 90(18): 794–8PubMedGoogle Scholar
  124. 124.
    Socransky SS. Relationship of bacteria to the etiology of periodontal disease. J Dent Res 1970 Mar–Apr; 49(2): 203–22PubMedGoogle Scholar
  125. 125.
    Theilade E. The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 1986 Nov; 13(10): 905–11PubMedGoogle Scholar
  126. 126.
    van Palenstein Helderman WH. Microbial etiology of periodontal disease. J Clin Periodontol 1981 Aug; 8(4): 261–80PubMedGoogle Scholar
  127. 127.
    Bolstad AI, Jensen HB, Bakken V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev 1996 Jan; 9(1): 55–71PubMedGoogle Scholar
  128. 128.
    Kurata H, Awano S, Yoshida A, et al. The prevalence of periodontopathogenic bacteria in saliva is linked to periodontal health status and oral malodour. J Med Microbiol 2008 May; 57 (Pt 5): 636–42PubMedGoogle Scholar
  129. 129.
    von Troil-Linden B, Torkko H, Alaluusua S, et al. Salivary levels of suspected periodontal pathogens in relation to periodontal status and treatment. J Dent Res 1995 Nov; 74(11): 1789–95Google Scholar
  130. 130.
    Yoshida A, Kawada M, Suzuki N, et al. TaqMan real-time polymerase chain reaction assay for the correlation of Treponema denticola numbers with the severity of periodontal disease. Oral Microbiol Immunol 2004 Jun; 19(3): 196–200PubMedGoogle Scholar
  131. 131.
    Kulekci G, Leblebicioglu B, Keskin F, et al. Salivary detection of periodontopathic bacteria in periodontally healthy children. Anaerobe 2008 Feb; 14(1): 49–54PubMedGoogle Scholar
  132. 132.
    Sakai VT, Campos MR, Machado MA, et al. Prevalence of four putative periodontopathic bacteria in saliva of a group of Brazilian children with mixed dentition: 1-year longitudinal study. Int J Paediatr Dent 2007 May; 17(3): 192–9PubMedGoogle Scholar
  133. 133.
    Sakamoto M, Huang Y, Ohnishi M, et al. Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J Med Microbiol 2004 Jun; 53 Pt 6: 563–71PubMedGoogle Scholar
  134. 134.
    Sakamoto M, Huang Y, Umeda M, et al. Detection of novel oral phylotypes associated with periodontitis. FEMS Microbiol Lett 2002 Nov 19; 217(1): 65–9PubMedGoogle Scholar
  135. 135.
    Sakamoto M, Takeuchi Y, Umeda M, et al. Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol 2003 Jan; 52 (Pt 1): 79–89PubMedGoogle Scholar
  136. 136.
    Sakamoto M, Umeda M, Ishikawa I, et al. Comparison of the oral bacterial flora in saliva from a healthy subject and two periodontitis patients by sequence analysis of 16S rDNA libraries. Microbiol Immunol 2000; 44(8): 643–52PubMedGoogle Scholar
  137. 137.
    Takeuchi Y, Umeda M, Sakamoto M, et al. Treponema socranskii, Treponema denticola, and Porphyromonas gingivalis are associated with severity of periodontal tissue destruction. J Periodontol 2001 Oct; 72(10): 1354–63PubMedGoogle Scholar
  138. 138.
    Haffajee AD, Socransky SS. Microbiology of periodontal diseases: introduction. Periodontol 2000 2005; 38: 9–12Google Scholar
  139. 139.
    Loesche WJ, Grossman NS. Periodontal disease as a specific, albeit chronic, infection: diagnosis and treatment. Clin Microbiol Rev 2001 Oct; 14(4): 727–52PubMedGoogle Scholar
  140. 140.
    Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000 2005; 38: 135–87Google Scholar
  141. 141.
    Moen K, Brun JG, Madland TM, et al. Immunoglobulin G and A antibody responses to Bacteroidesforsythus and Prevotella intermedia in sera and synovial fluids of arthritis patients. Clin Diagn Lab Immunol 2003 Nov; 10(6): 1043–50PubMedGoogle Scholar
  142. 142.
    Moen K, Brun JG, Valen M, et al. Synovial inflammation in active rheumatoid arthritis and psoriatic arthritis facilitates trapping of a variety of oral bacterial DNAs. Clin Exp Rheumatol 2006 Nov–Dec; 24(6): 656–63PubMedGoogle Scholar
  143. 143.
    Joshipura KJ, Douglass CW, Willett WC. Possible explanations for the tooth loss and cardiovascular disease relationship. Ann Periodontol 1998 Jul; 3(1): 175–83PubMedGoogle Scholar
  144. 144.
    Meurman JH, Sanz M, Janket SJ. Oral health, atherosclerosis, and cardiovascular disease. Crit Rev Oral Biol Med 2004; 15(6): 403–13PubMedGoogle Scholar
  145. 145.
    Morrison HI, Ellison LF, Taylor GW. Periodontal disease and risk of fatal coronary heart and cerebrovascular diseases. J Cardiovasc Risk 1999 Feb; 6(1): 7–11PubMedGoogle Scholar
  146. 146.
    Goldenberg RL, Culhane JF. Preterm birth and periodontal disease. N Engl J Med 2006 Nov 2; 355(18): 1925–7PubMedGoogle Scholar
  147. 147.
    Anttila T, Koskela P, Leinonen M, et al. Chlamydia pneumoniae infection and the risk of female early-onset lung cancer. Int J Cancer 2003 Nov 20; 107(4): 681–2PubMedGoogle Scholar
  148. 148.
    Biarc J, Nguyen IS, Pini A, et al. Carcinogenic properties of proteins with proinflammatory activity from Streptococcus infantarius (formerly S. bovis). Carcinogenesis 2004 Aug; 25(8): 1477–84PubMedGoogle Scholar
  149. 149.
    Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg 2004 Jul; 139(7): 760–5PubMedGoogle Scholar
  150. 150.
    Koyi H, Branden E, Gnarpe J, et al. An association between chronic infection with Chlamydia pneumoniae and lung cancer: a prospective 2-year study. APMIS 2001 Sep; 109(9): 572–80PubMedGoogle Scholar
  151. 151.
    Littman AJ, White E, Jackson LA, et al. Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol Biomarkers Prev 2004 Oct; 13(10): 1624–30PubMedGoogle Scholar
  152. 152.
    Mager DL. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med 2006; 4: 14Google Scholar
  153. 153.
    Huyghe A, Francois P, Charbonnier Y, et al. Novel microarray design strategy to study complex bacterial communities. Appl Environ Microbiol 2008 Mar; 74(6): 1876–85PubMedGoogle Scholar
  154. 154.
    Christodoulides N, Floriano PN, Miller CS, et al. Lab-on-a-chip methods for point-of-care measurements of salivary biomarkers of periodontitis. Ann N Y Acad Sci 2007 Mar; 1098: 411–28PubMedGoogle Scholar
  155. 155.
    Herr AE, Hatch AV, Giannobile WV, et al. Integrated microfluidic platform for oral diagnostics. Ann N Y Acad Sci 2007 Mar; 1098: 362–74PubMedGoogle Scholar
  156. 156.
    Wong DT. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J Am Dent Assoc 2006 Mar; 137(3): 313–21PubMedGoogle Scholar
  157. 157.
    Wong DT. Salivary diagnostics. Hoboken (NJ): Wiley-Blackwell, 2008Google Scholar
  158. 158.
    Wei F, Wang J, Liao W, et al. Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucleic Acids Res 2008 Jun; 36(11): e65PubMedGoogle Scholar
  159. 159.
    Wei F, Patel P, Liao W, et al. Electrochemical sensor for multiplex biomarkers detection. Clin Cancer Res 2009 Jul 1; 15(13): 4446–52PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  1. 1.Dental Research Institute, School of DentistryUniversity of CaliforniaLos AngelesUSA
  2. 2.Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesUSA
  3. 3.Division of Head and Neck Surgery/OtolaryngologyUniversity of CaliforniaLos AngelesUSA
  4. 4.Henry Samueli School of EngineeringUniversity of CaliforniaLos AngelesUSA
  5. 5.73-017 Center for Health SciencesUCLA Dental Research InstituteLos AngelesUSA

Personalised recommendations