Skip to main content
Log in

Detection of Low Levels of the Mitochondrial tRNALeu(UUR) 3243A>G Mutation in Blood Derived from Patients with Diabetes

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background: Mutations in the human mitochondrial genome have been suspected to play a significant role in the etiological development of mitochondrial diabetes. Detection of the 3243A>G mutation in the mitochondrial transfer RNALeu(UUR) gene (MTTL1), especially at low heteroplasmy levels, is highly desirable since it facilitates the diagnosis and subsequent management of the disease. The proportions of mutant mitochondrial DNA (mtDNA) can vary between tissues and are usually significantly higher in muscle than in blood, but muscle biopsies from patients with diabetes are rarely available.

Methods: Here, we describe a technique that can not only determine the presence of MTTL1 3243A>G, but can also estimate the percentage of mutant DNA. The technique is based on the use of the WAVE® system for the high-performance liquid chromatography (HPLC)-mediated analysis of mutation-specific restriction fragments derived from mutant PCR amplicons. PCR amplicon restriction fragment analysis by HPLC (PARFAH) can also be used for the detection of other mutations.

Results: This PARFAH analytical approach led to the discovery of the 3243A>G mutation in blood samples from a series of patients who had initially been reported to lack the mutation, even though matrilineal relatives had been shown to harbor the mutation associated with maternally inherited diabetes and deafness (MIDD) or mitochondrial myopathy encephalopathy lactic acidosis stroke-like episodes (MELAS) phenotypes. We have established that the PARFAH method can reliably detect as little as 1% mutant DNA in a sample, which would normally be missed by commonly used gel electrophoresis or sequencing methods.

Conclusions: The PARFAH method not only provides a sensitive, high-throughput, and cost-effective strategy for the detection of low levels of mtDNA mutations in peripheral tissues, but also facilitates the estimation of the percentage of mutant DNA in the sample. The fact that samples can be readily obtained from peripheral tissues in many cases will avoid the need for invasive muscle biopsies. Our ability to detect low levels of mtDNA mutations in blood samples of carriers will allow us to reassess the prevalence of the MTTL1 3243A>G mutation in patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Table II
Fig. 5

Similar content being viewed by others

References

  1. Wallace DC, Lott MT. Mitochondrial genes in degenerative diseases, cancer and aging. In: Rimoin DL, Connor JM, Pyeritz RE, et al., editors. Emery and Rimoin’s principles and practice of medical genetics. 4th ed. London: Churchill Livingstone; 2002: 299–409

    Google Scholar 

  2. DiMauro S. Mitochondrial diseases. Biochim Biophys Acta 2004 Jul 23; 1658(1–2): 80–8

    PubMed  CAS  Google Scholar 

  3. Brandon MC, Lott MT, Nguyen KC, et al. MITOMAP: a human mitochondrial genome database. 2004 update. Nucleic Acids Res 2005 Jan 1; 33 (database issue): D611–3

    Article  PubMed  CAS  Google Scholar 

  4. MITOMAP: A human mitochondrial genome database [online]. Available from URL: http://www.mitomap.org/ [Accessed 2006 Nov 1]

  5. Thorburn DR, Sugiana C, Salemi R, et al. Biochemical and molecular diagnosis of mitochondrial respiratory chain disorders. Biochim Biophys Acta 2004 Dec 6; 1659(2–3): 121–8

    PubMed  CAS  Google Scholar 

  6. Carelli V, Giordano C, d’Amati G. Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear-mitochondrial interaction. Trends Genet 2003 May; 19(5): 257–62

    Article  PubMed  CAS  Google Scholar 

  7. van den Ouweland JM, Lemkes HH, Ruitenbeek W, et al. Mutation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genet 1992; 1(5): 368–71

    Article  PubMed  Google Scholar 

  8. Ballinger SW, Shoffner JM, Hedaya EV, et al. Maternally transmitted diabetes and deafness associated with a 10.4kb mitochondrial DNA deletion. Nature Genet 1992 Apr; 1(1): 11–5

    Article  PubMed  CAS  Google Scholar 

  9. t’Hart LM, Lemkes HH, Heine RJ, et al. Prevalence of maternally inherited diabetes and deafness in diabetic populations in The Netherlands. Diabetologia 1994 Nov; 37(11): 1169–70

    Article  Google Scholar 

  10. Majamaa K, Moilanen JS, Uimonen S, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 1998; 63(2): 447–54

    Article  PubMed  CAS  Google Scholar 

  11. Lamson DW, Plaza SM. Mitochondrial factors in the pathogenesis of diabetes: a hypothesis for treatment. Altern Med Rev 2002 Apr; 7(2): 94–111

    PubMed  Google Scholar 

  12. Chomyn A, Enriquez JA, Micol V, et al. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem 2000 Jun 23; 275(25): 19198–209

    Article  PubMed  CAS  Google Scholar 

  13. Goto Y, Nonaka I, Horai S. A mutation in the tRNA Leu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348(6302): 651–3

    Article  PubMed  CAS  Google Scholar 

  14. Wong LJ, Boles RG. Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 2005 Apr; 354(1–2): 1–20

    Article  PubMed  CAS  Google Scholar 

  15. Moraes CT, Atencio DP, Oca-Cossio J, et al. Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations. J Mol Diagn 2003 Nov; 5(4): 197–208

    Article  PubMed  CAS  Google Scholar 

  16. Chen TJ, Boles RG, Wong LJ. Detection of mitochondrial DNA mutations by temporal temperature gradient gel electrophoresis. Clin Chem 1999; 45 (8 Pt 1): 1162–7

    PubMed  CAS  Google Scholar 

  17. Girald-Rosa W, Vleugels RA, Musiek AC, et al. High-throughput mitochondrial genome screening method for nonmelanoma skin cancer using multiplexed temperature gradient capillary electrophoresis. Clin Chem 2005 Feb; 51(2): 305–11

    Article  PubMed  CAS  Google Scholar 

  18. van Den Bosch BJ, de Coo RF, Scholte HR, et al. Mutation analysis of the entire mitochondrial genome using denaturing high performance liquid chromatography. Nucleic Acids Res 2000 Oct 15; 28(20): E89

    Article  Google Scholar 

  19. Biggin A, Henke R, Bennetts B, et al. Mutation screening of the mitochondrial genome using denaturing high-performance liquid chromatography. Mol Genet Metab 2005 Jan; 84(1): 61–74

    Article  PubMed  CAS  Google Scholar 

  20. Bannwarth S, Procaccio V, Paquis-Flucklinger V. Surveyor nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects. Hum Mutat 2005 Jun; 25(6): 575–82

    Article  PubMed  CAS  Google Scholar 

  21. Trounce I, Neill S, Wallace DC. Cytoplasmic transfer of the mtDNA nt 8993 TG (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc Natl Acad sci U S A 1994 Aug 30; 91(18): 8334–8

    Article  PubMed  CAS  Google Scholar 

  22. King MP. Use of ethidium bromide to manipulate ratio of mutated and wild-type mitochondrial DNA in cultured cells. Methods Enzymol 1996; 264: 339–44

    Article  PubMed  CAS  Google Scholar 

  23. Vialettes B, Paquis-Fluckinger V, Silvestre-Aillaud P, et al. Extra-pancreatic manifestations in diabetes secondary to mitochondrial DNA point mutation within the tRNALeu(UUR gene. Diabetes Care 1995; 18(7): 1023–8

    Article  PubMed  CAS  Google Scholar 

  24. Trounce IA, Kim YL, Jun AS, et al. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 1996; 264: 484–509

    Article  PubMed  CAS  Google Scholar 

  25. Moraes CT, Ricci E, Bonilla E, et al. The mitochondrial tRNALeu(UUR) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet 1992; 50(5): 934–49

    PubMed  CAS  Google Scholar 

  26. Gebhart SS, Shoffner JM, Koontz D, et al. Insulin resistance associated with maternally inherited diabetes and deafness. Metabolism 1996; 45(4): 526–31

    Article  PubMed  CAS  Google Scholar 

  27. Murdock DG, Christacos NC, Wallace DC. The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res 2000 Nov 1; 28(21): 4350–5

    Article  PubMed  CAS  Google Scholar 

  28. Shanske S, Pancrudo J, Kaufmann P, et al. Varying loads of the mitochondrial DNA A3243G mutation in different tissues: implications for diagnosis. Am J Med Genet A 2004 Oct 1; 130(2): 134–7

    Article  Google Scholar 

  29. Olsson C, Johnsen E, Nilsson M, et al. The level of the mitochondrial mutation A3243G decreases upon ageing in epithelial cells from individuals with diabetes and deafness. Eur J Hum Genet 2001 Dec; 9(12): 917–21

    Article  PubMed  CAS  Google Scholar 

  30. Rahman S, Poulton J, Marchington D, et al. Decrease of 3243 A>G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am J Hum Genet 2001; 68(1): 238–40

    Article  PubMed  CAS  Google Scholar 

  31. Guillausseau PJ, Massin P, Dubois-LaForque D, et al. Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 2001; 134 (9 Pt 1): 721–8

    PubMed  CAS  Google Scholar 

  32. Guigas B, Détaille D, Chauvin C, et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 2004 Sep 15; 382 (Pt 3): 877–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Anna-Geissler Foundation awarded to Vincent Procaccio, National Institute of Health grants (NS21328, AG13154, NS41850, AG24373, HL64017, and DK73691), and a Doris Duke Foundation clinical interface awarded to Douglas C. Wallace. This study was performed with the use of a system from Transgenomic Inc., and with scientific contribution from Nicolas Neckelmann (Transgenomic), but without any financial contribution from the company. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Procaccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procaccio, V., Neckelmann, N., Paquis-Flucklinger, V. et al. Detection of Low Levels of the Mitochondrial tRNALeu(UUR) 3243A>G Mutation in Blood Derived from Patients with Diabetes. Mol Diag Ther 10, 381–389 (2006). https://doi.org/10.1007/BF03256215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256215

Keywords

Navigation